145 resultados para the Low-variance deviational simulation Monte Carlo (LVDSMC)
A sequential Monte Carlo EM approach to the transcription factor binding site identification problem
A sequential Monte Carlo EM solution to the transcription factor binding site identification problem
Resumo:
The safety of the flights, and in particular conflict resolution for separation assurance, is one of the main tasks of Air Traffic Control. Conflict resolution requires decision making in the face of the considerable levels of uncertainty inherent in the motion of aircraft. We present a Monte Carlo framework for conflict resolution which allows one to take into account such levels of uncertainty through the use of a stochastic simulator. A simulation example inspired by current air traffic control practice illustrates the proposed conflict resolution strategy. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
In this paper we study parameter estimation for time series with asymmetric α-stable innovations. The proposed methods use a Poisson sum series representation (PSSR) for the asymmetric α-stable noise to express the process in a conditionally Gaussian framework. That allows us to implement Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) methods. We further enhance the series representation by introducing a novel approximation of the series residual terms in which we are able to characterise the mean and variance of the approximation. Simulations illustrate the proposed framework applied to linear time series, estimating the model parameter values and model order P for an autoregressive (AR(P)) model driven by asymmetric α-stable innovations. © 2012 IEEE.
Resumo:
In this paper, we present an expectation-maximisation (EM) algorithm for maximum likelihood estimation in multiple target models (MTT) with Gaussian linear state-space dynamics. We show that estimation of sufficient statistics for EM in a single Gaussian linear state-space model can be extended to the MTT case along with a Monte Carlo approximation for inference of unknown associations of targets. The stochastic approximation EM algorithm that we present here can be used along with any Monte Carlo method which has been developed for tracking in MTT models, such as Markov chain Monte Carlo and sequential Monte Carlo methods. We demonstrate the performance of the algorithm with a simulation. © 2012 ISIF (Intl Society of Information Fusi).
Resumo:
This paper investigates the effect of the burnup coupling scheme on the numerical stability and accuracy of coupled Monte-Carlo depletion calculations. We show that in some cases, even the Predictor Corrector method with relatively short time steps can be numerically unstable. In addition, we present two possible extensions to the Euler predictor-corrector (PC) method, which is typically used in coupled burnup calculations. These modifications allow using longer time steps, while maintaining numerical stability and accuracy. © 2013 Elsevier Ltd. All rights reserved.