31 resultados para tangent sphere bundle
Resumo:
Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics.
Resumo:
Acoustic radiation from a structure can be expressed in terms of modal radiation and modal coefficients. This paper investigates the contributions of these two modal properties to radiation excited by a point force. Sound radiation from two basic structures is considered: a baffled rectangular plate and a closed spherical shell. The plate behaviour is familiar, and governed by the relation between the natural frequency of a mode and its coincidence frequency. For a closed spherical shell, there are either zero or two critical frequencies, depending on the radius and thickness. When there are two the shell radiates well both above and below the two frequencies, and poorly in the frequency range between them. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.
Resumo:
The three-dimensional structure of very large samples of monodisperse bead packs is studied by means of X-Ray Computed Tomography. We retrieve the coordinatesofeach bead inthe pack and wecalculate the average coordination number by using the tomographic images to single out the neighbors in contact. The results are compared with the average coordination number obtained in Aste et al. (2005) by using a deconvolution technique. We show that the coordination number increases with the packing fraction, varying between 6.9 and 8.2 for packing fractions between 0.59 and 0.64. © 2005 Taylor & Francis Group.
Resumo:
Dissipativity is an essential concept of systems theory. The paper provides an extension of dissipativity, named differential dissipativity, by lifting storage functions and supply rates to the tangent bundle. Differential dissipativity is connected to incremental stability in the same way as dissipativity is connected to stability. It leads to a natural formulation of differential passivity when restricting to quadratic supply rates. The paper also shows that the interconnection of differentially passive systems is differentially passive, and provides preliminary examples of differentially passive electrical systems. © IFAC.
Resumo:
We consider the linear global stability of the boundary-layer flow over a rotating sphere. Our results suggest that a self-excited linear global mode can exist when the sphere rotates sufficiently fast, with properties fixed by the flow at latitudes between approximately 55°-65° from the pole (depending on the rotation rate). A neutral curve for global linear instabilities is presented with critical Reynolds number consistent with existing experimentally measured values for the appearance of turbulence. The existence of an unstable linear global mode is in contrast to the literature on the rotating disk, where it is expected that nonlinearity is required to prompt the transition to turbulence. Despite both being susceptible to local absolute instabilities, we conclude that the transition mechanism for the rotating-sphere flow may be different to that for the rotating disk. © 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves. © 2013 IEEE.
Resumo:
We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.
Resumo:
The finite element method is used to analyze the elastodynamic response of a columnar thermal barrier coating due to normal impact and oblique impact by an erosive particle. An assessment is made of the erosion by crack growth from preexisting flaws at the edge of each column: it is demonstrated that particle impacts can be sufficiently severe to give rise to columnar cracking. First, the transient stress state induced by the normal impact of a circular cylinder or a sphere is calculated in order to assess whether a 2D calculation adequately captures the more realistic 3D behavior. It is found that the transient stress states for the plane strain and axisymmetric models are similar. The sensitivity of response to particle diameter and to impact velocity is determined for both the cylinder and the sphere. Second, the transient stress state is explored for 2D oblique impact by a circular cylindrical particle and by an angular cylindrical particle. The sensitivity of transient tensile stress within the columns to particle shape (circular and angular), impact angle, impact location, orientation of the angular particle, and to the level of friction is explored in turn. The paper concludes with an evaluation of the effect of inclining the thermal barrier coating columns upon their erosion resistance. © 2011 The American Ceramic Society.