90 resultados para square wave voltammetry
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 Å/min over a 4″ diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its sp3 content, mass density, intrinsic stress, hydrogen content, C-H bonding, Raman spectra, optical gap, surface roughness and friction coefficient. The results obtained indicated that the film properties were maximized at an ion energy of approximately 167 eV, corresponding to an energy per daughter carbon ion of 76 eV. The relationship between the incident ion energy and film densification was also explained in terms of the subsurface implantation of carbon ions into the growing film.
Resumo:
Hydrogenated amorphous carbon nitride (a-C:N:H) has been synthesized using a high plasma density electron cyclotron wave resonance (ECWR) technique using N2 and C2H2 as source gases, at different ratios and a fixed ion energy (80 eV). The composition, structure and bonding state of the films were investigated and related to their optical and electrical properties. The nitrogen content in the film rises rapidly until the N2/C2H2 gas ratio reaches 2 and then increases more gradually, while the deposition rate decreases steeply, placing an upper limit for the nitrogen incorporation at 30 at%. For nitrogen contents above 20 at%, the band gap and sp3-bonded carbon fraction decrease from 1.7 to 1.1 eV and approximately 65 to 40%, respectively. Films with higher nitrogen content are less dense than the original hydrogenated tetrahedral amorphous carbon (ta-C:H) film but, because they have a relatively high band gap (1.1 eV), high resistivity (109 Ω cm) and moderate sp3-bonded carbon fraction (40%), they should be classed as polymeric in nature.
Resumo:
An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.
Resumo:
In this study, a micro-pump unit based on surface acoustic wave (SAW) on piezoelectric ZnO film is designed and fabricated as a micro-fluidic device. It employs a mechanical wave, which is generated electrically using an aluminum interdigital transducer (IDT), and propagates on the surface of the ZnO film. The ZnO film was used in this study because it has a high electromechanical coefficient and an excellent bonding with various substrate materials, in particular silicon. The sputtering parameters for ZnO film deposition have been optimized, and the ZnO films with different thickness from 1 micron to 5.5 microns were prepared. The film properties have been characterized using different methods, such as scanning electron microscopy, X-ray diffraction and atomic force microscopy. Aluminum IDT with a finger width and spacing of 8 microns was patterned on the ZnO film using a lift-off process. The frequency generated was measured using a network analyzer, and it varies from 130 MHz to 180 MHz as a function of film thickness. A signal generator was used to generate the frequency with a power amplifier to amplify the signal, which was then applied to aluminum IDT to generate the surface acoustic wave. If a liquid droplet exists on the surface carrying the acoustic wave, the energy and the momentum of the SAW will be coupled into the fluid, causing the liquid to vibrate and move on film surface. The strength of this movement is determined by the applied voltage and frequency. The volume of the liquid drop loaded on the SAW device in this study is of several hundreds of nanoliters. The movement of the liquid inside the droplet and also on the ZnO film surface can be demonstrated. The performance of ZnO SAW device was characterized as a function of film thickness. © 2007 IOP Publishing Ltd.
Resumo:
SAW devices were fabricated on c-axis oriented ZnO films grown on Si substrates. Effects of film thickness on the film microstructure and acoustic frequencies were studied. Both Rayleigh and Sezawa mode waves were detected on the devices, and their resonant frequencies were found to decrease with increase in film thickness.
Resumo:
SAW devices were fabricated on c-axis oriented ZnO films grown on Si substrates. Effects of film thickness on the film microstructure and acoustic frequencies were studied. Both Rayleigh and Sezawa mode waves were detected on the devices, and their resonant frequencies were found to decrease with increase in film thickness.
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.
Resumo:
Electrically addressed silicon bulk acoustic wave microresonators offer high Q solutions for applications in sensing and signal processing. However, the electrically transduced motional signal is often swamped by parasitic feedthrough in hybrid technologies. With the aim of enhancing the ratio of the motional to feedthrough current at nominal operating voltages, this paper benchmarks a variety of drive and detection principles for electrostatically driven square-extensional mode resonators operating in air and in a foundry MEMS process utilizing 2μm gaps. A new detection technique, combining second harmonic capacitive actuation and piezoresistive detection, outperforms previously reported methods utilizing voltages as low as ± 3V in air providing a promising solution for low voltage CMOS-MEMS integration. ©2009 IEEE.
Resumo:
The novelty of this study resides in the fabrication of a bio-sensing device, based on the surface acoustic wave (SAW) on a nanocrystalline ZnO film. The ZnO film was deposited using an rf magnetron sputtering at room temperature on silicon. The deposited films showed the c-axisoriented crystallite with grain size of ∼40 nm. The immunosensing device was fabricated using photolithographic protocols on the film. As a model biomolecular recognition and immunosensing, biospecific interaction between a 6-(2,4-dinitrophenyl) aminohexanoic acid (DNP) antigen and its antibody was employed, demonstrating the shifts of resonant frequencies on SAW immunosensing device. The device exhibited a linearity as a function of the antibody concentration in the range of 20∼20,000 ng/ml. © 2009 American Scientific Publishers. All rights reserved.
Resumo:
This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.
Resumo:
We report on the experimental characterization of a single crystal silicon square-plate microresonator. The resonator is excited in the square wine glass (SWG) mode at a mechanical resonance frequency of 2.065 MHz. The resonator displays quality factor of 9660 in air and an ultra-high quality factor of Q = 4.05 × 106 in 12 mtorr vacuum. The SWG mode may be described as a square plate that contracts along one axis in the fabrication plane, while simultaneously extending along an orthogonal axis in the same plane. The resonant structure is addressed in a 2-terminal configuration by utilizing equal and opposite drive polarities on surrounding capacitor electrodes, thereby decreasing the motional resistance of the resonator. The resonant micromechanical device has been fabricated in a commercial silicon-on-insulator process through the MEMSCAP foundry utilising a minimum electrostatic gap of 2 μm. © 2008 IEEE.