36 resultados para spectrum aggregation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lighthill theory is extended so that it may be used to determine the flow noise induced by a turbulent boundary layer over a plane homogeneous flexible surface. The influence of the surface properties and the mean flow on the sound generation is brought out explicitly through the use of a Green function. The form of the low-wavenumber wall-pressure spectrum on a rigid surface with an arbitrary mean flow profile is determined. The effect of a coating layer is investigated.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules.