65 resultados para single-electron-transistor
Resumo:
We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.
Resumo:
Trapped electrons, located close to the channel of a transistor, are promising as data storage elements in non-classical information processing. Cryogenic microwave spectroscopy has shown that these electrons give rise to high quality factor resonances in the drain current and a post excitation dynamic behaviour that is related to the system lifetime. Using a floating poly-silicon gate transistor, single shot spectroscopy is performed to characterise the dynamic behaviour during excitation. This behaviour is seen to be dominated by the decay of the transient component, which gives rise to oscillations around the high quality factor resonance. © 2012 American Institute of Physics.
Resumo:
We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times. © 2012 OSA.
Resumo:
We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
Low-temperature time-resolved photoluminescence spectroscopy is used to probe the dynamics of photoexcited carriers in single InP nanowires. At early times after pulsed excitation, the photoluminescence line shape displays a characteristic broadening, consistent with emission from a degenerate, high-density electron-hole plasma. As the electron-hole plasma cools and the carrier density decreases, the emission rapidly converges toward a relatively narrow band consistent with free exciton emission from the InP nanowire. The free excitons in these single InP nanowires exhibit recombination lifetimes closely approaching that measured in a high-quality epilayer, suggesting that in these InP nanowires, electrons and holes are relatively insensitive to surface states. This results in higher quantum efficiencies than other single-nanowire systems as well as significant state-filling and band gap renormalization, which is observed at high electron-hole carrier densities.
Resumo:
We investigate the use of a percolation-field-effect-transistor for the continuous weak measurement of a spatially Rabi oscillating trapped electron through the change in percolation pathway of the transistor channel. In contrast to conventional devices, this detection mechanism in principle does not require a change in the stored energy of the gate capacitance to modify the drain current, so reducing the measurement back-action. The signal-to-noise ratio and measurement bandwidth are seen to be improved compared to conventional devices, allowing further aspects of the dynamic behaviour to be observed. © 2013 AIP Publishing LLC.
Resumo:
We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the nonequilibrium electron gas decay at early times. © OSA 2012.
Resumo:
We review the potential of graphene in ultra-high speed circuits. To date, most of high-frequency graphene circuits typically consist of a single transistor integrated with a few passive components. The development of multi-transistor graphene integrated circuits operating at GHz frequencies can pave the way for applications in which high operating speed is traded off against power consumption and circuit complexity. Novel vertical and planar devices based on a combination of graphene and layered materials could broaden the scope and performances of future devices. © 2013 IEEE.