106 resultados para sensor-based control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a micro-electro-mechanical tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. Design aspects of the tilt sensor are first introduced and a design trade-off between sensitivity, resolution and robustness is addressed. A prototype sensor is microfabricated in a foundry process. The sensor is characterized to validate predictive analytical and FEA models of performance. The prototype is tested over tilt angles ranging over ±90 degrees and the linearity of the sensor is found to be better than 1.4% over the tilt angle range of ±20°. The noise-limited resolution of the sensor is found to be approximately 0.00026 degrees for an integration time of 0.6 seconds. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present for the first time, a novel silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) MEMS thermal wall shear stress sensor based on a tungsten hot-film and three thermopiles. These devices have been fabricated using a commercial 1 μm SOI-CMOS process followed by a deep reactive ion etch (DRIE) back-etch step to create silicon oxide membranes under the hot-film for effective thermal isolation. The sensors show an excellent repeatability of electro-thermal characteristics and can be used to measure wall shear stress in both constant current anemometric as well as calorimetric modes. The sensors have been calibrated for wall shear stress measurement of air in the range of 0-0.48 Pa using a suction type, 2-D flow wind tunnel. The calibration results show that the sensors have a higher sensitivity (up to four times) in calorimetric mode compared to anemometric mode for wall shear stress lower than 0.3 Pa. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a high-resolution frequency-output MEMS tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. A combination of design enhancements enables significantly higher sensitivity for this device as compared to previously reported prototype sensors. The MEMS tilt sensor is calibrated on a manual tilt table over tilt angles ranging over 0-90 degrees with a relatively linear response measured in the range of ±20°(linearity error <2.3%) with a scale factor of approximately 50.06 Hz/degree. The noise-limited resolution of the sensor is found to be approximately 250 nano-radians for an integration time of 0.8 s, which is over an order of magnitude better than previously reported results [1]. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart chemical sensor based on CMOS(complementary metal-oxide- semiconductor) compatible SOI(silicon on insulator) microheater platform was realized by facilitating ZnO nanowires growth on the small membrane at the relatively low temperature. Our SOI microheater platform can be operated at the very low power consumption with novel metal oxide sensing materials, like ZnO or SnO2 nanostructured materials which demand relatively high sensing temperature. In addition, our sol-gel growth method of ZnO nanowires on the SOI membrane was found to be very effective compared with ink-jetting or CVD growth techniques. These combined techniques give us the possibility of smart chemical sensor technology easily merged into the conventional semiconductor IC application. The physical properties of ZnO nanowire network grown by the solution-based method and its chemical sensing property also were reported in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a robust SOI-CMOS ethanol sensor based on a tungsten-doped lanthanum iron oxide sensing material. The device shows response to gas, has low power consumption, good uniformity, high temperature stability and can be manufactured at low cost and with integrated circuitry. The platform is a tungsten-based CMOS micro-hotplate that has been shown to be stable for over two thousand hours at a high temperature (600°C) in a form of accelerated life test. The tungsten-doped lanthanum iron oxide was deposited on the micro-hotplate as a slurry with terpineol using a syringe, dried and annealed. Preliminary gas testing was done and the material shows response to ethanol vapour. These results are promising and we believe that this combination of a robust CMOS micro-hotplate and a good sensing material can form the basis for a commercial CMOS gas sensor. © 2011 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract-This paper reports a single-crystal silicon mass sensor based on a square-plate resonant structure excited in the wine glass bulk acoustic mode at a resonant frequency of 2.065 MHz and an impressive quality factor of 4 million at 12 mtorr pressure. Mass loading on the resonator results in a linear downshift in the resonant frequency of this device, wherein the measured sensitivity is found to be 175 Hz cm2/μg. The silicon resonator is embedded in an oscillator feedback loop, which has a short-term frequency stability of 3 mHz (approximately 1.5 ppb) at an operating pressure of 3.2 mtorr, corresponding to an equivalent mass noise floor of 17 pg/cm2. Possible applications of this device include thin film monitoring and gas sensing, with the potential added benefits of scalability and integration with CMOS technology. © 2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To explore the neural mechanisms related to representation of the manipulation dynamics of objects, we performed whole-brain fMRI while subjects balanced an object in stable and highly unstable states and while they balanced a rigid object and a flexible object in the same unstable state, in all cases without vision. In this way, we varied the extent to which an internal model of the manipulation dynamics was required in the moment-to-moment control of the object's orientation. We hypothesized that activity in primary motor cortex would reflect the amount of muscle activation under each condition. In contrast, we hypothesized that cerebellar activity would be more strongly related to the stability and complexity of the manipulation dynamics because the cerebellum has been implicated in internal model-based control. As hypothesized, the dynamics-related activation of the cerebellum was quite different from that of the primary motor cortex. Changes in cerebellar activity were much greater than would have been predicted from differences in muscle activation when the stability and complexity of the manipulation dynamics were contrasted. On the other hand, the activity of the primary motor cortex more closely resembled the mean motor output necessary to execute the task. We also discovered a small region near the anterior edge of the ipsilateral (right) inferior parietal lobule where activity was modulated with the complexity of the manipulation dynamics. We suggest that this is related to imagining the location and motion of an object with complex manipulation dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Brushless Doubly-Fed Machine (BDFM) is a brushless electrical generator which allows variable speed operation with a power converter rated at only a fraction of the machine rating. This paper details an example implementation of the BDFM in a medium-scale wind turbine. Details of a simplified design procedure based on electrical and magnetic loadings are given along with the results of tests on the manufactured machine. These show that a BDFM of the scale works as expected but that the 4/8 BDFM chosen was slower and thus larger than the turbine's original induction machine. The implementation of the turbine system is discussed, including the vector-based control scheme that ensures the BDFM operates at a demanded speed and the Maximum Power Point Tracking (MPPT) scheme that selects the rotor speed that extracts the most power from the incident wind conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we consider the problem of constructing a distributed feedback law to achieve synchronization for a group of k agents whose states evolve on SO(n) and which exchange only partial state information along communication links. The partial state information is given by the action of the state on reference vectors in ℝn. We propose a gradient based control law which achieves exponential local convergence to a synchronization configuration under a rank condition on a generalized Laplacian matrix. Furthermore, we discuss the case of time-varying reference vectors and provide a convergence result for this case. The latter helps reach synchronization, requiring less communication links and weaker conditions on the instantaneous reference vectors. Our methods are illustrated on an attitude synchronization problem where agents exchange only their relative positions observed in the respective body frames. ©2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the speed and flux regulation of induction motors under the assumption that the motor parameters are poorly known. An adaptive passivity-based control is proposed that guarantees robust regulation as well as accurate estimation of the electrical parameters that govern the motor performance. This paper provides a local stability analysis of the adaptive scheme, which is illustrated by simulations and supported by a successful experimental validation on an industrial product. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A time multiplexed rectangular Zernike modal wavefront sensor based on a nematic phase-only liquid crystal spatial light modulator and specially designed for a high power two-electrode tapered laser diode which is a compact and novel free space optical communication source is used in an adaptive beam steering free space optical communication system, enabling the system to have 1.25 GHz modulation bandwidth, 4.6° angular coverage and the capability of sensing aberrations within the system and caused by atmosphere turbulence up to absolute value of 0.15 waves amplitude and correcting them in one correction cycle. Closed-loop aberration correction algorithm can be implemented to provide convergence for larger and time varying aberrations. Improvement of the system signal-to-noise-ratio performance is achieved by aberration correction. To our knowledge, it is first time to use rectangular orthonormal Zernike polynomials to represent balanced aberrations for high power rectangular laser beam in practice. © 2014 IEEE.