22 resultados para robust extended kalman filter


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model compensation is a standard way of improving the robustness of speech recognition systems to noise. A number of popular schemes are based on vector Taylor series (VTS) compensation, which uses a linear approximation to represent the influence of noise on the clean speech. To compensate the dynamic parameters, the continuous time approximation is often used. This approximation uses a point estimate of the gradient, which fails to take into account that dynamic coefficients are a function of a number of consecutive static coefficients. In this paper, the accuracy of dynamic parameter compensation is improved by representing the dynamic features as a linear transformation of a window of static features. A modified version of VTS compensation is applied to the distribution of the window of static features and, importantly, their correlations. These compensated distributions are then transformed to distributions over standard static and dynamic features. With this improved approximation, it is also possible to obtain full-covariance corrupted speech distributions. This addresses the correlation changes that occur in noise. The proposed scheme outperformed the standard VTS scheme by 10% to 20% relative on a range of tasks. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model-based approaches to handling additive background noise and channel distortion, such as Vector Taylor Series (VTS), have been intensively studied and extended in a number of ways. In previous work, VTS has been extended to handle both reverberant and background noise, yielding the Reverberant VTS (RVTS) scheme. In this work, rather than assuming the observation vector is generated by the reverberation of a sequence of background noise corrupted speech vectors, as in RVTS, the observation vector is modelled as a superposition of the background noise and the reverberation of clean speech. This yields a new compensation scheme RVTS Joint (RVTSJ), which allows an easy formulation for joint estimation of both additive and reverberation noise parameters. These two compensation schemes were evaluated and compared on a simulated reverberant noise corrupted AURORA4 task. Both yielded large gains over VTS baseline system, with RVTSJ outperforming the previous RVTS scheme. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a structured SVM framework suitable for noise-robust medium/large vocabulary speech recognition. Several theoretical and practical extensions to previous work on small vocabulary tasks are detailed. The joint feature space based on word models is extended to allow context-dependent triphone models to be used. By interpreting the structured SVM as a large margin log-linear model, illustrates that there is an implicit assumption that the prior of the discriminative parameter is a zero mean Gaussian. However, depending on the definition of likelihood feature space, a non-zero prior may be more appropriate. A general Gaussian prior is incorporated into the large margin training criterion in a form that allows the cutting plan algorithm to be directly applied. To further speed up the training process, 1-slack algorithm, caching competing hypothesis and parallelization strategies are also proposed. The performance of structured SVMs is evaluated on noise corrupted medium vocabulary speech recognition task: AURORA 4. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the notion of M-step robust fault tolerance for discrete-time systems where finite-time completion of a control manoeuvre is desired. It considers a scenario with two distinct objectives; a primary and secondary target are specified as sets to be reached in finite-time, whilst satisfying operating constraints on the states and inputs. The primary target is switched to the secondary target when a fault affects the system. As it is unknown when or if the fault will occur, the trajectory to the primary target is constrained to ensure reachability of the secondary target within M steps. A variable-horizon linear MPC formulation is developed to illustrate the concept. The formulation is then extended to provide robustness to bounded disturbances by use of tightened constraints. Simulations demonstrate the efficacy of the controller formulation on a double-integrator model. © 2011 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical theorems in control theory are only of interest in so far as their assumptions relate to practical situations. The space of systems with transfer functions in ℋ∞, for example, has many advantages mathematically, but includes large classes of non-physical systems, and one must be careful in drawing inferences from results in that setting. Similarly, the graph topology has long been known to be the weakest, or coarsest, topology in which (1) feedback stability is a robust property (i.e. preserved in small neighbourhoods) and (2) the map from open-to-closed-loop transfer functions is continuous. However, it is not known whether continuity is a necessary part of this statement, or only required for the existing proofs. It is entirely possible that the answer depends on the underlying classes of systems used. The class of systems we concern ourselves with here is the set of systems that can be approximated, in the graph topology, by real rational transfer function matrices. That is, lumped parameter models, or those distributed systems for which it makes sense to use finite element methods. This is precisely the set of systems that have continuous frequency responses in the extended complex plane. For this class, we show that there is indeed a weaker topology; in which feedback stability is robust but for which the maps from open-to-closed-loop transfer functions are not necessarily continuous. © 2013 Copyright Taylor and Francis Group, LLC.