200 resultados para resonant laser ionisation
Resumo:
MBE regrowth on patterned np-GaAs wafers has been used to fabricate GaAs/AlGaAs double barrier resonant tunnel diodes with a side-gate in the plane of the quantum well. The physical diameters vary from 1 to 20 μm. For a nominally 1 μm diameter diode the peak current is reduced by more than 95% at a side-gate voltage of -2 V at 1.5 K, which we estimate corresponds to an active tunnel region diameter of 75 nm ± 10 nm. At high gate biases additional structure appears in the conductance data. Differential I-V measurements show a linear dependence of the spacing of subsidiary peaks on gate bias indicating lateral quantum confinement. © 1996 American Institute of Physics.
Resumo:
A passively mode-locked optically-pumped InGaAs/GaAs quantum well laser with an intracavity semiconductor saturable absorber mirror emits sub-100-fs pulses. Pulse energy declines steeply as pulse duration is reduced below 100 fs due to gain saturation. © 2010 Optical Society of America.
Resumo:
We present a method to experimentally characterize the gain filter and calculate a corresponding parabolic gain bandwidth of lasers that are described by "class A" dynamics by solving the master equation of spectral condensation for Gaussian spectra. We experimentally determine the gain filter, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror. © 2010 Optical Society of America.
Resumo:
A tunable DS-DBR laser is demonstrated for uncooled WDM C-band channel generation with tight spacing (SOGHz) and low thermal drift (±2.5GHz) up to 70°C. 2.5Gb/s direct modulation with transmission over a 75km link is achieved. © 2000 Optical Society of America.
Resumo:
We present for the first time a comprehensive study of the static and dynamic properties of a coolerless tunable three-section DBR laser. Wavelength tuning and thermal drift under uncooled conditions are investigated. Variance of modulation bandwidth with temperature rise and wavelength control is studied, and then verified by uncooled direct modulation performance with clear open eye diagrams. Satisfactory direct modulation is demonstrated at bit rate of up to 6Gbit/s, which is believed to be the fastest out of devices of similar structure so far.
Resumo:
A 4Gbit/s directly modulated DBR laser is demonstrated with nanometre scale thermal tuning over an extended 20-70°C temperature range. >40dB side mode suppression over the entire temperature range is achieved. © 2005 Optical Society of America.
Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems
Resumo:
An uncooled three-section tunable distributed Bragg reflector laser is demonstrated as an athermal transmitter for low-cost uncooled wavelength-division-multiplexing (WDM) systems with tight channel spacing. A ±0.02-nm thermal wavelength drift is achieved under continuous-wave operation up to 70 °C. Dynamic sidemode suppression ratio of greater than 35 dB is consistently obtained under 3.125-Gb/s direct modulation over a 20 °C-70 °C temperature range, with wavelength variation of as low as ±0.2 nm. This indicates that more than an order of magnitude reduction in coarse WDM channel spacing is possible using this source. © 2005 IEEE.