26 resultados para residual fertilization
Resumo:
Implants of boron into silicon which has been made amorphous by silicon implantation have a shallower depth profile than the same implants into silicon. This results in higher activation and restricted diffusion of the B implants after annealing, and there are also significant differences in the microstructure after annealing compared with B implants into silicon. Rapid isothermal heating with an electron beam and furnace treatments are used to characterize the defect structure as a function of time and temperature. Defects are seen to influence the diffusion of non-substitutional boron.
Resumo:
This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.
Resumo:
Most tribological pairs carry their service load not just once but for a very large number of repeated cycles. During the early stages of this life, protective residual stresses may be developed in the near surface layers which enable loads which are of sufficient magnitude to cause initial plastic deformation to be accommodated purely elastically in the longer term. This is an example of the phenomenon of 'shakedown' and when its effects are incorporated into the design and operation schedule of machine components this process can lead to significant increases in specific loading duties or improvements in material utilization. Although the underlying principles can be demonstrated by reference to relatively simple stress systems, when a moving Hertzian pressure distribution in considered, which is the form of loading applicable to many contact problems, the situation is more complex. In the absence of exact solutions, bounding theorems, adopted from the theory of plasticity, can be used to generate appropriate load or shakedown limits so that shakedown maps can be drawn which delineate the boundaries between potentially safe and unsafe operating conditions. When the operating point of the contact lies outside the shakedown limit there will be an increment of plastic strain with each application of the load - these can accumulate leading eventually to either component failure or the loss of material by wear. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
A technique is presented for measuring the exhaust gas recirculation (EGR) and residual gas fraction (RGF) using a fast UEGO based O2 measurement of the manifold or in-cylinder gases, and of the exhaust gases. The technique has some advantages over the more common CO2-based method. In the case of an RGF measurement, fuel interference must be eliminated and special fuelling arrangements are is required. It is shown how a UEGO-based measurement, though sensitive to reactive species in the exhaust (such as H 2), as a system reports EGR/ RGF rates faithfully. Preliminary tests showed that EGR and RGF measurements using the O2 approach agreed well with CO2-based measurements. © 2011 SAE International.
Resumo:
A technique is presented for measuring the exhaust gas recirculation (EGR) and residual gas fraction (RGF) using a fast UEGO based O2 measurement of the manifold or in-cylinder gases, and of the exhaust gases. The technique has some advantages over the more common CO2-based method. In the case of an RGF measurement, fuel interference must be eliminated and special fuelling arrangements are is required. It is shown how a UEGO-based measurement, though sensitive to reactive species in the exhaust (such as H 2), as a system reports EGR/ RGF rates faithfully. Preliminary tests showed that EGR and RGF measurements using the O2 approach agreed well with CO2-based measurements. Copyright © 2011 SAE International.
Resumo:
The residual stresses in Pb(Zr
Resumo:
The residual stresses in Pb(Zr0.3Ti0.7)O3 thin films were measured by the sin2 Ψ method using the normal X-ray incidence. The spacing of different planes (hkl) parallel to the film surface were converted to the spacing of a set of inclined planes (100). The angles between (100) and (hkl) were equivalent to the tilting angles of (100) from the normal of film surface. The residual stresses were extracted from the linear slope of the strain difference between the equivalent inclined direction and normal direction with respect to the sin2 Ψ. The results were in consistency with that derived from the conventional sin2 Ψ method. © 2013 The Japan Society of Applied Physics.
Resumo:
The residual tensile strength of glass fibre reinforced composites with randomly distributed holes and fragment impact damages have been investigated. Experiments have been performed on large scale panels and small scale specimens. A finite element model has been developed to predict the strength of multi-axial panels with randomly distributed holes. Further, an effective analytical model has been developed using percolation theory. The model gives an estimation of the residual strength as function of removed surface area caused by the holes. It is found that if 8% of the area is removed, the residual strength is approximately 50% of the un-damaged strength. © 2014 Published by Elsevier Ltd.