88 resultados para quantum cascade laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation of the mode-locking performance of a two-section external-cavity mode-locked InGaAs quantum-dot laser diode, focusing on repetition rate, pulse duration and pulse energy. The lowest repetition rate to-date of any passively mode-locked semiconductor laser diode is demonstrated (310 MHz) and a restriction on the pulse energy (at 0.4 pJ) for the shortest pulse durations is identified. Fundamental mode-locking from 310 MHz to 1.1 GHz was investigated, and harmonic mode-locking was achieved up to a repetition rate of 4.4 GHz. Fourier transform limited subpicosecond pulse generation was realized through implementation of an intra-cavity glass etalon, and pulse durations from 930fs to 8.3ps were demonstrated for a repetition rate of 1 GHz. For all investigations, mode-locking with the shortest pulse durations yielded constant pulse energies of ∼0.4 pJ, revealing an independence of the pulse energy on all the mode-locking parameters investigated (cavity configuration, driving conditions, pulse duration, repetition rate, and output power). © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A packaged 10GHz monolithic two-section quantum-dot mode-locked laser is presented, with record narrow 500Hz RF electrical linewidth for passive mode-locking. Single sideband noise spectra show 147fs integrated timing jitter over the 4MHz-80MHz frequency range. © 2009 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An injection locked QD laser is demonstrated to provide single longitudinal mode operation with a 40dB SMSR and an improvement in RIN peak from 1.3-2.3GHz. Alpha factor is measured to be 0.8. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An injection locked QD laser is demonstrated to provide single longitudinal mode operation with a 40dB SMSR and an improvement in RIN peak from 1.3-2.3GHz. Alpha factor is measured to be 0.8. © 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A passively mode-locked optically-pumped InGaAs/GaAs quantum well laser with an intracavity semiconductor saturable absorber mirror emits sub-100-fs pulses. Pulse energy declines steeply as pulse duration is reduced below 100 fs due to gain saturation. © 2010 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A dynamic model of passive mode-locking in quantum-dot laser diodes is presented. It is found that in contrast with quantum-well lasers, rapid gain recovery is key for mode-locking of quantum-dot lasers. © 2008 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.