18 resultados para point-to-segment algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the converter rating requirement of a Brushless Doubly-Fed Induction Generator for wind turbine applications by considering practical constraints such as generator torque-speed requirement, reactive power management and grid low-voltage ride-through (LVRT). Practical data have been used to obtain a realistic system model of a Brushless DFIG wind turbine using steady-state and dynamic models. A converter rating optimization is performed based on the given constraints. The converter current and voltage requirements are examined and the resulting inverter rating is compared to optimization algorithm results. In addition, the effects of rotor leakage inductance on LVRT performance and hence converter rating is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of properly exploiting a classifier's inherent geometric characteristics when developing a classification methodology is emphasized as a prerequisite to achieving near optimal performance when carrying out thematic mapping. When used properly, it is argued that the long-standing maximum likelihood approach and the more recent support vector machine can perform comparably. Both contain the flexibility to segment the spectral domain in such a manner as to match inherent class separations in the data, as do most reasonable classifiers. The choice of which classifier to use in practice is determined largely by preference and related considerations, such as ease of training, multiclass capabilities, and classification cost. © 1980-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discipline of Artificial Intelligence (AI) was born in the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century has passed, and AI has turned into an important field whose influence on our daily lives can hardly be overestimated. The original view of intelligence as a computer program - a set of algorithms to process symbols - has led to many useful applications now found in internet search engines, voice recognition software, cars, home appliances, and consumer electronics, but it has not yet contributed significantly to our understanding of natural forms of intelligence. Since the 1980s, AI has expanded into a broader study of the interaction between the body, brain, and environment, and how intelligence emerges from such interaction. This advent of embodiment has provided an entirely new way of thinking that goes well beyond artificial intelligence proper, to include the study of intelligent action in agents other than organisms or robots. For example, it supplies powerful metaphors for viewing corporations, groups of agents, and networked embedded devices as intelligent and adaptive systems acting in highly uncertain and unpredictable environments. In addition to giving us a novel outlook on information technology in general, this broader view of AI also offers unexpected perspectives into how to think about ourselves and the world around us. In this chapter, we briefly review the turbulent history of AI research, point to some of its current trends, and to challenges that the AI of the 21st century will have to face. © Springer-Verlag Berlin Heidelberg 2007.