29 resultados para petroleum industries
Resumo:
Papermaking is considered as an energy-intensive industry partly due to the fact that the machinery and procedures have been designed at the time when energy was both cheap and plentiful. A typical paper machine manufactures a variety of different products (grades) which impose variable per-unit raw material and energy costs to the mill. It is known that during a grade change operation the products are not market-worthy. Therefore, two different production regimes, i.e. steady state and grade transition can be recognised in papermaking practice. Among the costs associated with paper manufacture, the energy cost is 'more variable' due to (usually) day-to-day variations of the energy prices. Moreover, the production of a grade is often constrained by customer delivery time requirements. Given the above constraints and production modes, the product scheduling technique proposed in this paper aims at optimising the sequence of orders in a single machine so that the cost of production (mainly determined by the energy) is minimised. Simulation results obtained from a commercial board machine in the UK confirm the effectiveness of the proposed method. © 2011 IFAC.
Resumo:
Purpose - As traditional manufacturing, previously vital to the UK economy, is increasingly outsourced to lower-cost locations, policy makers seek leadership in emerging industries by encouraging innovative start-up firms to pursue competitive opportunities. Emerging industries can either be those where a technology exists but the corresponding downstream value chain is unclear, or a new technology may subvert the existing value chain to satisfy existing customer needs. Hence, this area shows evidence of both technology-push and market-pull forces. The purpose of this paper is to focus on market-pull and technology-push orientations in manufacturing ventures, specifically examining how and why this orientation shifts during the firm's formative years. Design/methodology/approach - A multiple case study approach of 25 UK start-ups in emerging industries is used to examine this seldom explored area. The authors offer two models of dynamic business-orientation in start-ups and explain the common reasons for shifts in orientation and why these two orientations do not generally co-exist during early firm development. Findings - Separate evolution paths were found for strategic orientation in manufacturing start-ups and separate reasons for them to shift in their early development. Technology-push start-ups often changed to a market-pull orientation because of new partners, new market information or shift in management priorities. In contrast, many of the start-ups beginning with a market-pull orientation shifted to a technology-push orientation because early market experiences necessitated a focus on improving processes in order to increase productivity or meet partner specifications, or meet a demand for complementary products. Originality/value - While a significant body of work exists regarding manufacturing strategy in established firms, little work has been found that investigates how manufacturing strategy emerges in start-up companies, particularly those in emerging industries. © Emerald Group Publishing Limited.
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Resumo:
Over the past 30 years, developed economies' approaches to supporting growth have focused on competitiveness, entrepreneurship and innovation to varying degrees. However, following the credit crisis and global recession in 2008 there has been demand for an updated narrative of growth based on the emergence of new industries. This paper provides a brief review of the available literature on how governments in leading economies can support new industries to emerge to the benefit of their national economy, discusses a number of issues for governments trying to support emerging industries, provides a framework of activities which governments considering this type of intervention should consider, and discusses the case of the regenerative medicine industry in the UK using the framework. Copyright © 2013 Inderscience Enterprises Ltd.