21 resultados para partial differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal control of problems that are constrained by partial differential equations with uncertainties and with uncertain controls is addressed. The Lagrangian that defines the problem is postulated in terms of stochastic functions, with the control function possibly decomposed into an unknown deterministic component and a known zero-mean stochastic component. The extra freedom provided by the stochastic dimension in defining cost functionals is explored, demonstrating the scope for controlling statistical aspects of the system response. One-shot stochastic finite element methods are used to find approximate solutions to control problems. It is shown that applying the stochastic collocation finite element method to the formulated problem leads to a coupling between stochastic collocation points when a deterministic optimal control is considered or when moments are included in the cost functional, thereby forgoing the primary advantage of the collocation method over the stochastic Galerkin method for the considered problem. The application of the presented methods is demonstrated through a number of numerical examples. The presented framework is sufficiently general to also consider a class of inverse problems, and numerical examples of this type are also presented. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of bounded input perturbations on the stability of nonlinear globally asymptotically stable delay differential equations is analyzed. We investigate under which conditions global stability is preserved and if not, whether semi-global stabilization is possible by controlling the size or shape of the perturbation. These results are used to study the stabilization of partially linear cascade systems with partial state feedback.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multidisciplinary Design Optimization (MDO) is a methodology for optimizing large coupled systems. Over the years, a number of different MDO decomposition strategies, known as architectures, have been developed, and various pieces of analytical work have been done on MDO and its architectures. However, MDO lacks an overarching paradigm which would unify the field and promote cumulative research. In this paper, we propose a differential geometry framework as such a paradigm: Differential geometry comes with its own set of analysis tools and a long history of use in theoretical physics. We begin by outlining some of the mathematics behind differential geometry and then translate MDO into that framework. This initial work gives new tools and techniques for studying MDO and its architectures while producing a naturally arising measure of design coupling. The framework also suggests several new areas for exploration into and analysis of MDO systems. At this point, analogies with particle dynamics and systems of differential equations look particularly promising for both the wealth of extant background theory that they have and the potential predictive and evaluative power that they hold. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves. © 2013 IEEE.