29 resultados para parasitic oscillation
Resumo:
Oscillation processes have been revealed in the course of reversible polarization study in ferroelectric liquid crystals. The oscillation frequency of polarization vector has been found to be from 1 to 30 kHz. The oscillation parameters were studied as functions of temperature. Temperature dependences of the oscillation amplitude and damping decrement have been measured.
Resumo:
Lean premixed prevaporized (LPP) technology has been widely used in the new generation of gas turbines in which reduced emissions are a priority. However, such combustion systems are susceptible to the damage of self-excited oscillations. Feedback control provide a way of preventing such dynamic stabilities. A flame dynamics assumption is proposed for a recently developed unsteady heat release model, the robust design technique, ℋ ∞ loop-shaping, is applied for the controller design and the performance of the controller is confirmed by simulations of the closed-loop system. The Integral Quadratic Constraints(IQC) method is employed to prove the stability of the closed-loop system. ©2010 IEEE.
Resumo:
The acoustic response of conventional mechanical oscillators, such as a piezoelectric crystal, is predominantly harmonic at modest amplitudes. However, here, we observe from the electrical response that significant motional anharmonicity is introduced in the presence of attached analyte. Experiments were conducted with streptavidin-coated polystyrene microbeads of various sizes attached to a quartz crystal resonator via specific and nonspecific molecular tethers in liquid. Quantitative analysis reveals that the deviation of odd Fourier harmonics of the response caused by introduction of microbeads as a function of oscillation amplitude presents a unique signature of the molecular tether. Hence, the described anharmonic detection technique (ADT) based on this function allows screening of biomolecules and provides an additional level of selectivity in receptor-based detection that is often associated with nonspecific interactions. We also propose methods to extract mechanical force-extension characteristics of the molecular tether and activation energy using this technique.
Resumo:
The application of the Quartz Crystal Microbalance (QCM) for biochemical sensing is well known. However, utilizing the nonlinear response of the QCM at elevated amplitudes has received sporadic attention. This study presents results for QCM-analyte interaction that provide insight into the nonlinear dynamics of the QCM with attached analyte. In particular, interactions of the QCM with polystyrene microbeads physisorbed via self-assembled monolayer (SAM) were studied through experiments and modelling. It was found that the response of the QCM coupled to these surface adsorbents is anharmonic even at low oscillation amplitudes and that the nonlinear signals from such interactions are much higher than those for bare quartz. Therefore, these signals can potentially be used as sensitive signatures of adsorbents and their kinetics on the surface. ©2009 IEEE.
Resumo:
In this experimental and numerical study, two types of round jet are examined under acoustic forcing. The first is a non-reacting low density jet (density ratio 0.14). The second is a buoyant jet diffusion flame at a Reynolds number of 1100 (density ratio of unburnt fluids 0.5). Both jets have regions of strong absolute instability at their base and this causes them to exhibit strong self-excited bulging oscillations at welldefined natural frequencies. This study particularly focuses on the heat release of the jet diffusion flame, which oscillates at the same natural frequency as the bulging mode, due to the absolutely unstable shear layer just outside the flame. The jets are forced at several amplitudes around their natural frequencies. In the non-reacting jet, the frequency of the bulging oscillation locks into the forcing frequency relatively easily. In the jet diffusion flame, however, very large forcing amplitudes are required to make the heat release lock into the forcing frequency. Even at these high forcing amplitudes, the natural mode takes over again from the forced mode in the downstream region of the flow, where the perturbation is beginning to saturate non-linearly and where the heat release is high. This raises the possibility that, in a flame with large regions of absolute instability, the strong natural mode could saturate before the forced mode, weakening the coupling between heat release and incident pressure perturbations, hence weakening the feedback loop that causes combustion instability. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Electrically addressed silicon bulk acoustic wave microresonators offer high Q solutions for applications in sensing and signal processing. However, the electrically transduced motional signal is often swamped by parasitic feedthrough in hybrid technologies. With the aim of enhancing the ratio of the motional to feedthrough current at nominal operating voltages, this paper benchmarks a variety of drive and detection principles for electrostatically driven square-extensional mode resonators operating in air and in a foundry MEMS process utilizing 2μm gaps. A new detection technique, combining second harmonic capacitive actuation and piezoresistive detection, outperforms previously reported methods utilizing voltages as low as ± 3V in air providing a promising solution for low voltage CMOS-MEMS integration. ©2009 IEEE.
Resumo:
This paper presents a method for fast and accurate determination of parameters relevant to the characterization of capacitive MEMS resonators like quality factor (Q), resonant frequency (fn), and equivalent circuit parameters such as the motional capacitance (Cm). In the presence of a parasitic feedthrough capacitor (CF) appearing across the input and output ports, the transmission characteristic is marked by two resonances: series (S) and parallel (P). Close approximations of these circuit parameters are obtained without having to first de-embed the resonator motional current typically buried in feedthrough by using the series and parallel resonances. While previous methods with the same objective are well known, we show that these are limited to the condition where CF ≪ CmQ. In contrast, this work focuses on moderate capacitive feedthrough levels where CF > CmQ, which are more common in MEMS resonators. The method is applied to data obtained from the measured electrical transmission of fabricated SOI MEMS resonators. Parameter values deduced via direct extraction are then compared against those obtained by a full extraction procedure where de-embedding is first performed and followed by a Lorentzian fit to the data based on the classical transfer function associated with a generic LRC series resonant circuit. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.
Resumo:
We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4. We compare the data, obtained at fields from 10 to 45 T, to band structure calculations performed using the local density approximation. Analysis of the data suggests that f holes participate in the Fermi surface up to the highest magnetic fields studied. We comment on the significance of these findings for the unconventional superconducting properties of this material.
Resumo:
A novel CMOS compatible lateral thyristor is proposed in this paper. Its thyristor conduction is fully controlled by a p-MOS gate. Loss of MOS control due to parasitic latch-up has been eliminated and triggering of the main thyristor at lower forward current achieved. The device operation has been verified by 2-D numerical simulations and experimental fabrication.
Resumo:
A generalized acoustic equation is used to identify the mechanisms driving combustion instability. The relationship between the unsteady rate of heat release and the flow is found to influence significantly the frequency of oscillation. A kinematic flame model is reviewed and used to describe the unsteady combustion in a premixed ducted flame and in a typical lean premixed industrial gas turbine. Comparison is made between theory and experiment. | A generalized acoustic equation is used to identify the mechanisms driving combustion instability. The relationship between the unsteady rate of heat release and the flow is found to influence significantly the frequency of oscillation. A kinematic flame model is reviewed and used to describe the unsteady combustion in a premixed ducted flame and in a typical lean premixed industrial gas turbine. Comparison is made between theory and experiment.
Resumo:
The unstable combustion that can occur in combustion chambers is a major problem for aeroengines and ground-based industrial gas turbines. Nowadays, CFD provides a flexible, low cost tool to supplement direct measurement. This paper presents simulations of combustion oscillations in a liquid-fuelled experimental rig at the University of Cambridge. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone and to develop inlet and outlet boundary conditions just upstream and downstream of the combustion region enabling the CFD calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in good agreement with experimental measurements. More details about the unstable combustion can be obtained from the simulation results. The approach developed here is expected to provide a powerful tool for the design and operation of stable combustion systems. Copyright © 2009 by ASME.
Resumo:
This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.