38 resultados para nursing responses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a popular technique for measuring the intrinsic mechanical response of bone and has been used to measure a single-valued elastic modulus. However, bone is a composite material with 20-80 nm hydroxyapatite plates embedded in a collagen matrix, and modern instrumentation allows for measurements at these small length scales. The present study examines the indentation response of bone and artificial gelatin-apatite nanocomposite materials across three orders of magnitude of lengthscale, from nanometers to micrometers, to isolate the composite phase contributions to the overall response. The load-displacement responses were variable and deviated from the quadratic response of homogeneous materials at small depths. The distribution of apparent elastic modulus values narrowed substantially with increasing indentation load. Indentation of particulate nanocomposites was simulated using finite element analysis. Modeling results replicated the convergence in effective modulus seen in the experiments. It appears that the apatite particles are acting as the continuous ("matrix") phase in bone and nanocomposites. Copyright © 2004 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental observations of the time-dependent mechanical responses of collagenous tissues have demonstrated behavior that deviates from standard treatments of linear or quasi-linear viscoelasticity. In particular, time-dependent deformation can be strongly coupled to strain level, and strain-rate independence can be observed under monotonic loading, even for a tissue with dramatic stress relaxation. It was postulated that this nonlinearity is fundamentally associated with gradual recruitment of individual collagen fibrils during applied mechanical loading. Based on previously observed experimental results for the time-dependent response of collagenous soft tissues, a model is developed to describe the mechanical behavior of these tissues under uniaxial loading. Tissue stresses, under applied strain-controlled loading, are assumed to be a sum of elastic and viscoelastic stress contributions. The relative contributions of elastic and viscoelastic stresses is assumed to vary with strain level, leading to strain- and time-dependent mechanical behavior. The model formulation is examined under conditions of monotonic loading at varying constant strain rates and stress-relaxation at different applied strain levels. The model is compared with experimental data for a membranous biological soft tissue, the amniotic sac, and is found to agree well with experimental results. The limiting behavior of the novel model, at large strains relative to the collagen recruitment, is consistent with the quasi-linear viscoelastic approach. © 2006 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel test method for the characterisation of flexible forming processes is proposed and applied to four flexible forming processes: Incremental Sheet Forming (ISF), conventional spinning, the English wheel and power hammer. The proposed method is developed in analogy with time-domain control engineering, where a system is characterised by its impulse response. The spatial impulse response is used to characterise the change in workpiece deformation created by a process, but has also been applied with a strain spectrogram, as a novel way to characterise a process and the physical effect it has on the workpiece. Physical and numerical trials to study the effects of process and material parameters on spatial impulse response lead to three main conclusions. Incremental sheet forming is particularly sensitive to process parameters. The English wheel and power hammer are strongly similar and largely insensitive to both process and material parameters. Spinning develops in two stages and is sensitive to most process parameters, but insensitive to prior deformation. Finally, the proposed method could be applied to modelling, classification of existing and novel processes, product-process matching and closed-loop control of flexible forming processes. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designers are typically male, under 35 years old and unimpaired. Users can be of any age and currently over 15% will have some form of impairment. As a result a vast array of consumer products suit youthful males and in many cases exclude other demographics (e.g. Keates and Clarkson, 2004). In studying the way a range of users learn how to use new products, key cognitive difficulties are revealed and linked back to the areas of the product causing the problems. The trials were structured so each user had to complete a specific set of tasks and were consistent across the user spectrum. The tasks set aimed to represent both everyday usage and less familiar functions. Whilst the knowledge gained could provide designers with valuable guidelines for the specific products examined, a more general abstraction provides knowledge of the pitfalls to avoid in the design of other product families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An existing driver-vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha-gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the drivers reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra-and inter-subject variability. The results highlight the significance of a drivers neuromuscular dynamics in determining the vehicle response to disturbances. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beneficial effects on bone-implant bonding may accrue from ferromagnetic fiber networks on implants which can deform in vivo inducing controlled levels of mechanical strain directly in growing bone. This approach requires ferromagnetic fibers that can be implanted in vivo without stimulating undue inflammatory cell responses or cytotoxicity. This study examines the short-term in vitro responses, including attachment, viability, and inflammatory stimulation, of human peripheral blood monocytes to 444 ferritic stainless steel fiber networks. Two types of 444 networks, differing in fiber cross section and thus surface area, were considered alongside austenitic stainless steel fiber networks, made of 316L, a widely established implant material. Similar high percent seeding efficiencies were measured by CyQuant® on all fiber networks after 48 h of cell culture. Extensive cell attachment was confirmed by fluorescence and scanning electron microscopy, which showed round monocytes attached at various depths into the fiber networks. Medium concentrations of lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-α) were determined as indicators of viability and inflammatory responses, respectively. Percent LDH concentrations were similar for both 444 fiber networks at all time points, whereas significantly lower than those of 316L control networks at 24 h. All networks elicited low-level secretions of TNF-α, which were significantly lower than that of the positive control wells containing zymosan. Collectively, the results indicate that 444 networks produce comparable responses to medical implant grade 316L networks and are able to support human peripheral blood monocytes in short-term in vitro cultures without inducing significant inflammatory or cytotoxic effects.