394 resultados para nucleation mode
Resumo:
A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.
Resumo:
Coupled-cavity passive harmonic mode-locking of a quantum well based vertical-external-cavity surface-emitting laser has been demonstrated, yielding an output pulse train of 1.5 ps pulses at a repetition rate of 80 GHz and with an average power of 80 mW. Harmonic mode-locking results from coupling between the main laser cavity and a cavity formed within the substrate of the saturable absorber structure. Mode-locking on the second harmonic of the substrate cavity allows a train of 1.1 ps pulses to be generated at a repetition rate of 147 GHz with 40 mW average power. © 2010 American Institute of Physics.
Resumo:
We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.
Resumo:
Experimental and computational studies on the dynamics of millimeter-scale cylindrical liquid jets are presented. The influences of the modulation amplitude and the nozzle geometry on jet behavior have been considered. Laser Doppler anemometry (LDA) was used in order to extract the velocity field of a jet along its length, and to determine the velocity modulation amplitude. Jet shapes and breakup dynamics were observed via shadowgraph imaging. Aqueous solutions of glycerol were used for these experiments. Results were compared with Lagrangian finite-element simulations with good quantitative agreement. © 2011 The American Physical Society.
Resumo:
The creation and evolution of millimeter-sized droplets of a Newtonian liquid generated on demand by the action of pressure pulses were studied experimentally and simulated numerically. The velocity response within a model, large-scale printhead was recorded by laser Doppler anemometry, and the waveform was used in Lagrangian finite-element simulations as an input. Droplet shapes and positions were observed by shadowgraphy and compared with their numerically obtained analogues. © 2011 American Physical Society.
Resumo:
This paper details a bulk acoustic mode resonator fabricated in single-crystal silicon with a quality factor of 15 000 in air, and over a million below 10 mTorr at a resonant frequency of 2.18 MHz. The resonator is a square plate that is excited in the square-extensional mode and has been fabricated in a commercial foundry silicon-on-insulator (SOI) MEMS process through MEMSCAP. This paper also presents a simple method of extracting resonator parameters from raw measurements heavily buried in electrical feedthrough. Its accuracy has been demonstrated through a comparison between extracted motional resistance values measured at different voltage biases and those predicted from an analytical model. Finally, a method of substantially cancelling electrical feedthrough through system-level electronic implementation is also introduced. © 2008 IOP Publishing Ltd.
Resumo:
A single-crystal silicon resonant bulk acoustic mass sensor with a measured resolution of 125 pg cm2 is presented. The mass sensor comprises a micromachined silicon plate that is excited in the square-extensional bulk acoustic resonant mode at a frequency of 2.182 MHz, with a quality factor exceeding 106. The mass sensor has a measured mass to frequency shift sensitivity of 132 Hz cm2 μg. The resonator element is embedded in a feedback loop of an electronic amplifier to implement an oscillator with a short term frequency stability of better than 7 ppb at an operating pressure of 3.8 mTorr. © 2007 American Institute of Physics.
Resumo:
We use vibration localization as a sensitive means of detecting small perturbations in stiffness in a pair of weakly coupled micromechanical resonators. For the first time, the variation in the eigenstates is studied by electrostatically coupling nearly identical resonators to allow for stronger localization of vibrational energy due to perturbations in stiffness. Eigenstate variations that are orders of magnitude greater than corresponding shifts in resonant frequency for an induced stiffness perturbation are experimentally demonstrated. Such high, voltagetunable parametric sensitivities together with the added advantage of intrinsic common mode rejection pave the way to a new paradigm of mechanical sensing. ©2009 IEEE.
Resumo:
This paper reports the design and electrical characterization of a micromechanical disk resonator fabricated in single crystal silicon using a foundry SOI micromachining process. The microresonator has been selectively excited in the radial extensional and the wine glass modes by reversing the polarity of the DC bias voltage applied on selected drive electrodes around the resonant structure. The quality factor of the resonator vibrating in the radial contour mode was 8000 at a resonant frequency of 6.34 MHz at pressure below 10 mTorr vacuum. The highest measured quality factor of the resonator in the wine glass resonant mode was 1.9 × 106 using a DC bias voltage of 20 V at about the same pressure in vacuum; the resonant frequency was 5.43 MHz and the lowest motional resistance measured was approximately 17 kΩ using a DC bias voltage of 60 V applied across 2.7 μm actuation gaps. This corresponds to a resonant frequency-quality factor (f-Q) product of 1.02 × 1013, among the highest reported for single crystal silicon microresonators, and on par with the best quartz crystal resonators. The quality factor for the wine glass mode in air was approximately 10,000. © 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.
Resumo:
We report on the experimental characterization of a single crystal silicon square-plate microresonator. The resonator is excited in the square wine glass (SWG) mode at a mechanical resonance frequency of 2.065 MHz. The resonator displays quality factor of 9660 in air and an ultra-high quality factor of Q = 4.05 × 106 in 12 mtorr vacuum. The SWG mode may be described as a square plate that contracts along one axis in the fabrication plane, while simultaneously extending along an orthogonal axis in the same plane. The resonant structure is addressed in a 2-terminal configuration by utilizing equal and opposite drive polarities on surrounding capacitor electrodes, thereby decreasing the motional resistance of the resonator. The resonant micromechanical device has been fabricated in a commercial silicon-on-insulator process through the MEMSCAP foundry utilising a minimum electrostatic gap of 2 μm. © 2008 IEEE.
Resumo:
This paper reports a preliminary examination of the effect of anchor geometry design on the quality factor of flexural mode resonators operating in vacuum using both FE simulation and measurements of resonator frequency response. Three types of structures have been considered in this study: an elliptical mode ring, a double ended tuning fork, and a doubly-clamped beam. We consider the relative distribution of strain energies in both the resonant structure and the connecting stem, which is indicative of the measured quality factor. The measured quality factors of the different structures are compared against each other, based on which suggestions are proposed for optimizing the anchor limited quality factor (Q) in flexural mode micromechanical resonators. ©2008 IEEE.
Resumo:
MEMS resonators fabricated in silicon-on-insulator (SOI) technology must be clamped to the substrate via anchoring stems connected either from within the resonator or through the sides, with the side-clamped solution often employed due to manufacturing constraints. This paper examines the effect of two types of commonly used side-clamped, anchoring-stem geometries on the quality factor of three different laterally-driven resonator topologies. This study employs an analytical framework which considers the relative distribution of strain energies between the resonating body and clamping stems. The ratios of the strain energies are computed using ANSYS FEA and used to provide an indicator of the expected anchor-limited quality factors. Three MEMS resonator topologies have been fabricated and characterized in moderate vacuum. The associated measured quality factors are compared against the computed strain energy ratios, and the trends are shown to agree well with the experimental data. © 2011 IOP Publishing Ltd.
Resumo:
High repetition rate passively mode-locked sources are of significant interest due to their potential for applications including optical clocking, optical sampling, communications and others. Due to their short excited state lifetimes mode-locked VECSELs are ideally suited to high repetition rate operation, however fundamentally mode-locked quantum well-based VECSELs have not achieved repetition rates above 10 GHz due to the limitations placed on the cavity geometry by the requirement that the saturable absorber saturates more quickly than the gain. This issue has been overcome by the use of quantum dot-based saturable absorbers with lower saturation fluences leading to repetition rates up to 50 GHz, but sub-picosecond pulses have not been achieved at these repetition rates. We present a passively harmonically mode-locked VECSEL emitting pulses of 265 fs duration at a repetition rate of 169 GHz with an output power of 20 mW. The laser is based around an antiresonant 6 quantum well gain sample and is mode-locked using a semiconductor saturable absorber mirror. Harmonic modelocking is achieved by using an intracavity sapphire etalon. The sapphire then acts as a coupled cavity, setting the repetition rate of the laser while still allowing a tight focus on the saturable absorber. RF spectra of the laser output show no peaks at harmonics of the fundamental repetition rate up to 26 GHz, indicating stable harmonic modelocking. Autocorrelations reveal groups of pulses circulating in the cavity as a result of an increased tendency towards Q-switched modelocking due to the low pulse energies.