27 resultados para multi-dimensional maps


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Innovation policies play an important role throughout the development process of emerging industries in China. Existing policy and industry studies view the emergence process as a black-box, and fail to understand the impacts of policy to the process along which it varies. This paper aims to develop a multi-dimensional roadmapping tool to better analyse the dynamics between policy and industrial growth for new industries in China. Through reviewing the emergence process of Chinese wind turbine industry, this paper elaborates how policy and other factors influence the emergence of this industry along this path. Further, this paper generalises some Chinese specifics for the policy-industry dynamics. As a practical output, this study proposes a roadmapping framework that generalises some patterns of policy-industry interactions for the emergence process of new industries in China. This paper will be of interest to policy makers, strategists, investors and industrial experts. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a nonparametric Bayesian method for disease subtype discovery in multi-dimensional cancer data. Our method can simultaneously analyse a wide range of data types, allowing for both agreement and disagreement between their underlying clustering structure. It includes feature selection and infers the most likely number of disease subtypes, given the data. We apply the method to 277 glioblastoma samples from The Cancer Genome Atlas, for which there are gene expression, copy number variation, methylation and microRNA data. We identify 8 distinct consensus subtypes and study their prognostic value for death, new tumour events, progression and recurrence. The consensus subtypes are prognostic of tumour recurrence (log-rank p-value of $3.6 \times 10^{-4}$ after correction for multiple hypothesis tests). This is driven principally by the methylation data (log-rank p-value of $2.0 \times 10^{-3}$) but the effect is strengthened by the other 3 data types, demonstrating the value of integrating multiple data types. Of particular note is a subtype of 47 patients characterised by very low levels of methylation. This subtype has very low rates of tumour recurrence and no new events in 10 years of follow up. We also identify a small gene expression subtype of 6 patients that shows particularly poor survival outcomes. Additionally, we note a consensus subtype that showly a highly distinctive data signature and suggest that it is therefore a biologically distinct subtype of glioblastoma. The code is available from https://sites.google.com/site/multipledatafusion/

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most research on technology roadmapping has focused on its practical applications and the development of methods to enhance its operational process. Thus, despite a demand for well-supported, systematic information, little attention has been paid to how/which information can be utilised in technology roadmapping. Therefore, this paper aims at proposing a methodology to structure technological information in order to facilitate the process. To this end, eight methods are suggested to provide useful information for technology roadmapping: summary, information extraction, clustering, mapping, navigation, linking, indicators and comparison. This research identifies the characteristics of significant data that can potentially be used in roadmapping, and presents an approach to extracting important information from such raw data through various data mining techniques including text mining, multi-dimensional scaling and K-means clustering. In addition, this paper explains how this approach can be applied in each step of roadmapping. The proposed approach is applied to develop a roadmap of radio-frequency identification (RFID) technology to illustrate the process practically. © 2013 © 2013 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations. The model predicts combustion characteristics at different fuel split ratios and injection timings. The effect of fuel reforming on ignition timing is investigated along with the causes of cycle to cycle variations and unstable operation. A detailed flux analysis during NVO unearths interesting results regarding the effect of NOx on ignition timing compared with its effect during the main combustion. © 2009 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A critical element for the successful growth of GaN device layers on Si is accurate control of the AlGaN buffer layers used to manage strain. Here we present a method for measuring the composition of the AlGaN buffer layers in device structures which makes use of a one-dimensional x-ray detector to provide efficient measurement of a reciprocal space map which covers the full compositional range from AlN to GaN. Combining this with a suitable x-ray reflection with low strain sensitivity it is possible to accurately determine the Al fraction of the buffer layers independent of their relaxation state. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical degradation is thought to be one of the causes of capacity fade within Lithium-Ion batteries. In this work we develop a coupled stress-diffusion model for idealized spherical storage particles, which is analogous to the development of thermal strains. We then non-dimensionalize the model and identify three important parameters that control the development of stress within these particles. We can therefore use a wide number of values for these parameters to make predictions about the stress responses of different materials. The maximum stress developed within the particle for different values of these parameters are plotted as stress maps. A two dimensional model of a battery was then developed, in order to study the effect of particle morphology. Copyright © 2012 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the problem of passive control of a chain of N identical masses in which there is an identical passive connection between neighbouring masses and a similar connection to a movable point. The problem arises in the design of multi-storey buildings which are subjected to earthquake disturbances, but applies in other situations, for example vehicle platoons. The paper will study the scalar transfer functions from the disturbance to a given intermass displacement. It will be shown that these transfer functions can be conveniently represented in the form of complex iterative maps and that these maps provide a method to establish boundedness in N of the H ∞-norm of these transfer functions for certain choices of interconnection impedance. © 2013 IEEE.