17 resultados para mitigation plan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full-and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios. © 1992-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.