25 resultados para max-semistable law


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a strategy for min-max Moving Horizon Estimation (MHE) of a class of uncertain hybrid systems is proposed. The class of hybrid systems being considered are Piecewise Affine systems (PWA) with both continuous valued and logic components. Furthermore, we consider the case when there is a (possibly structured) norm bounded uncertainty in each subsystem. Sufficient conditions on the time horizon and the penalties on the state at the beginning of the estimation horizon to guarantee convergence of the MHE scheme will be provided. The MHE scheme will be implemented as a mixed integer semidefinite optimisation for which an efficient algorithm was recently introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30-50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kolmogorov's two-thirds, ((Δv) 2) ∼ e 2/ 3r 2/ 3, and five-thirds, E ∼ e 2/ 3k -5/ 3, laws are formally equivalent in the limit of vanishing viscosity, v → 0. However, for most Reynolds numbers encountered in laboratory scale experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. By creating artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled, we show why this is the case. The energy of eddies of scale, s, is shown to vary as s 2/ 3, in accordance with Kolmogorov's 1941 law, and we vary the range of scales, γ = s max/s min, in any one realisation from γ = 25 to γ = 800. This is equivalent to varying the Reynolds number in an experiment from R λ = 60 to R λ = 600. While there is some evidence of a five-thirds law for g > 50 (R λ > 100), the two-thirds law only starts to become apparent when g approaches 200 (R λ ∼ 240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, ((Δv) 2) takes the form of a mixed power-law, a 1+a 2r 2+a 3r 2/ 3, where a 2r 2 tracks the variation in enstrophy and a 3r 2/ 3 the variation in energy. These findings are shown to be consistent with experimental data where the polution of the r 2/ 3 law by the enstrophy contribution, a 2r 2, is clearly evident. We show that higherorder structure functions (of even order) suffer from a similar deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.