17 resultados para liquids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microarraying involves laying down genetic elements onto a solid substrate for DNA analysis on a massively parallel scale. Microarrays are prepared using a pin-based robotic platform to transfer liquid samples from microtitre plates to an array pattern of dots of different liquids on the surface of glass slides where they dry to form spots diameter < 200 μm. This paper presents the design, materials selection, micromachining technology and performance of reservoir pins for microarraying. A conical pin is produced by (i) conventional machining of stainless steel or wet etching of tungsten wire, followed by (ii) micromachining with a focused laser to produce a microreservoir and a capillary channel structure leading from the tip. The pin has a flat end diameter < 100 μm from which a 500 μm long capillary channel < 15 μm wide leads up the pin to a reservoir. Scanning electron micrographs of the metal surface show roughness on the scale of 10 μm, but the pins nevertheless give consistent and reproducible spotting performance. The pin capacity is 80 nanolitres of fluid containing DNA, and at least 50 spots can be printed before replenishing the reservoir. A typical robot holds can hold up to 64 pins. This paper discusses the fabrication technology, the performance and spotting uniformity for reservoir pins, the possible limits to miniaturization of pins using this approach, and the future prospects for contact and non-contact arraying technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.