122 resultados para lateral bending test
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.
Resumo:
We report on the fabrication of lateral emitters using carbon nanotubes (CNTs) grown via plasma enhanced chemical vapour deposition (PECVD). Carbon nanotubes are dispersed randomly onto a substrate, mapped, contacted with metal, and by etching the substrate, a suspended lateral emitter structure is formed. Field emission measurements from the lateral emitters show a turn-on voltage as low as 12 V. The emission characteristics showed good fits to the Fowler-Nordheim (FN) theory indicating that conventional field emission was indeed observed from these devices. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We report on the fabrication and field emission of carbon nanotube lateral field emitters. Due to its high aspect ratio and mechanical strength, we use vertically aligned multi-wall carbon nanotubes prepared by plasma-enhanced chemical vapour deposition as cathodes, which makes the fabrication of cantilever type lateral field emitters possible. The emission characteristics show that the field emission initiates at 11-17 V. The device has high geometrical enhancement factors (9.3 × 106 cm-1) compared to standard Spindt tips, which may be due to increased field concentration at the nanotube tip and the close proximity of the anode (<1 μm). The relative ease of fabrication compared to vertical field emitters and enhanced field emission characteristics observed makes the carbon nanotube lateral field emitter a good candidate for future integrated nano-electronic devices.
Resumo:
MEMS resonators fabricated in silicon-on-insulator (SOI) technology must be clamped to the substrate via anchoring stems connected either from within the resonator or through the sides, with the side-clamped solution often employed due to manufacturing constraints. This paper examines the effect of two types of commonly used side-clamped, anchoring-stem geometries on the quality factor of three different laterally-driven resonator topologies. This study employs an analytical framework which considers the relative distribution of strain energies between the resonating body and clamping stems. The ratios of the strain energies are computed using ANSYS FEA and used to provide an indicator of the expected anchor-limited quality factors. Three MEMS resonator topologies have been fabricated and characterized in moderate vacuum. The associated measured quality factors are compared against the computed strain energy ratios, and the trends are shown to agree well with the experimental data. © 2011 IOP Publishing Ltd.