151 resultados para high electron mobility transistor


Relevância:

50.00% 50.00%

Publicador:

Resumo:

CMOS nanocrystalline silicon thin film transistors with high field effect mobility are reported. The transistors were directly deposited by radio-frequency plasma enhanced chemical vapor deposition at 150°C The transistors show maximum field effect mobility of 450 cm2/V-s for electrons and 100 cm2/V-s for holes at room temperature. We attribute the high mobilities to a reduction of the oxygen content, which acts as an accidental donor. Indeed, secondary ion mass spectrometry measurements show that the impurity concentration in the nanocrystalline Si layer is comparable to, or lower than, the defect density in the material, which is already low thanks to hydrogen passivation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this presentation, we report excellent electrical and optical characteristics of a dual gate photo thin film transistor (TFT) with bi-layer oxide channel, which was designed to provide virgin threshold voltage (V T) control, improve the negative bias illumination temperature stress (NBITS) reliability, and offer high photoconductive gain. In order to address the photo-sensitivity of phototransistor for the incoming light, top transparent InZnO (IZO) gate was employed, which enables the independent gate control of dual gate photo-TFT without having any degradation of its photosensitivity. Considering optimum initial V T and NBITS reliability for the device operation, the top gate bias was judiciously chosen. In addition, the speed and noise performance of the photo-TFT is competitive with silicon photo-transistors, and more importantly, its superiority lies in optical transparency. © 2011 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanocomposite thin film transistors (TFTs) based on nonpercolating networks of single-walled carbon nanotubes (CNTs) and polythiophene semiconductor [poly [5, 5′ -bis(3-dodecyl-2-thienyl)- 2, 2′ -bithiophene] (PQT-12)] thin film hosts are demonstrated by ink-jet printing. A systematic study on the effect of CNT loading on the transistor performance and channel morphology is conducted. With an appropriate loading of CNTs into the active channel, ink-jet printed composite transistors show an effective hole mobility of 0.23 cm 2 V-1 s-1, which is an enhancement of more than a factor of 7 over ink-jet printed pristine PQT-12 TFTs. In addition, these devices display reasonable on/off current ratio of 105-10 6, low off currents of the order of 10 pA, and a sharp subthreshold slope (<0.8 V dec-1). The work presented here furthers our understanding of the interaction between polythiophene polymers and nonpercolating CNTs, where the CNT density in the bilayer structure substantially influences the morphology and transistor performance of polythiophene. Therefore, optimized loading of ink-jet printed CNTs is crucial to achieve device performance enhancement. High performance ink-jet printed nanocomposite TFTs can present a promising alternative to organic TFTs in printed electronic applications, including displays, sensors, radio-frequency identification (RFID) tags, and disposable electronics. © 2009 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 angstrom/min and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its bonding, stress and friction coefficient. The results indicated that the ta-C:H produced using this source fulfills the necessary requirements for applications requiring enhanced tribological performance.