49 resultados para graphic designer
Resumo:
The adoption of inclusive design approach into design practice is compatible to the needs of an ageing society. However, tools and methods that promote inclusivity during new product development are scarcely used in industry. This paper is part of a research project that investigates ways to accommodate inclusive design into the design process in industrial context. The present paper is based on the finds from the observations and interviews with industrial designers and interviews with stakeholders. The outcomes from the study supported a better understanding of the client-designer dynamic as well as the stages in the design process where information related to inclusive design could be introduced. The findings were essential to inspire the development of an inclusive design interactive technique to be used by clients and designers. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.
Resumo:
An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card. © 2014 SPIE and IS and T.
Resumo:
Companies aiming to be 'sustainability leaders' in their sector and governments wanting to support their ambitions need a means to assess the changes required to make a significant difference in the impact of their whole sector. Previous work on scenario analysis/scenario planning demonstrates extensive developments and applications, but as yet few attempts to integrate the 'triple bottom line' concerns of sustainability into scenario planning exercises. This paper, therefore, presents a methodology for scenario analysis of large change to an entire sector. The approach includes calculation of a 'triple bottom line graphic equaliser' to allow exploration and evaluation of the trade-offs between economic, environmental and social impacts. The methodology is applied to the UK's clothing and textiles sector, and results from the study of the sector are summarised. In reflecting on the specific study, some suggestions are made about future application of a similar methodology, including a template of candidate solutions that may lead to significant reduction in impacts. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
It is widely acknowledged that a company's ability to aquire market share, and hence its profitability, is very closely linked to the speed with which it can produce a new design. Indeed, a study by the U.K. Department of Trade and Industry has shown that the critical factor which determines profitability is the timely delivery of the new product. Late entry to market or high production costs dramatically reduce profits whilst an overrun on development cost has little significant effect. This paper describes a method which aims to assist the designer in producing higher performance turbomachinery designs more quickly by accelerating the process by which they are produced. The adopted approach combines an enhanced version of the 'Signposting' design process management methodology with industry-standard analysis codes and Computational Fluid Dynamics (CFD). It has been specifically configured to enable process-wide iteration, near instantaneous generation of guidance data for the designer and fully automatic data handling. A successful laboratory experiment based on the design of a large High Pressure Steam Turbine is described and this leads on to current work which incorporates the extension of the proven concept to a full industrial application for the design of Aeroengine Compressors with Rolls-Royce plc.
Resumo:
This report presents a dynamic approach to design process planning which aims to enable design process improvement. The tool utilises a signposting model to direct activity by suggesting the next most appropriate task in the design process. This suggestion is based on the presence of key parameters, their associated confidences and an assessment of the performance of the design process. The assessment approach proposed has the potential to adapt to the experience of the designer. A case study of mechanical component design is presented to illustrate the behaviour of this model for design process improvement.
Resumo:
This is a report on a workshop held at Cambridge University Engineering Design Centre, 17-10 June 1992. This workshop was held to discuss the issue of 'function' and 'function-to-form' evolution in mechanical design. The authors organised this workshop as they felt that their understanding of these topics was incomplete and that discussions between researchers might help to clarify some key issues.
The topic chosen for the workshop proved to be a stimulating one. The term 'function' is part of a designer's daily vocabulary, however there is poor agreement about its definition. In order to develop computer systems to support product evolution, a precise definition is required. Further the value of 'function' and 'function-to-form' evolution as a good choice of workshop topic is evident from the lack of firm conclusions that resulted from the sessions. This lack of consensus made for lively discussion and left participants questioning many of their preconceived ideas.
Attendance at the workshop was by invitation only. A list of the participants (not all those invited could attend due to time and financial constraints) is given in Appendix 1.
Resumo:
The paper describes the development of a software design aid for use at the conceptual stage of engineering design. It is intended for use in the design of mechatronic products but has wider potential uses. Early approaches were based on function structures and tables of options and the system that evolved allows the assembly of schemes linked by matching their input and output ports. A database of components is provided which can be accessed via different indexes and the designer can easily create and compare alternative schemes at the concept stage. A bond graph approach is used to define the interconnections between components. This allows correct port matching but also provides for future development such as constraint propagation through the design and links to simulation tools. © 1993 Springer-Verlag New York Inc.
Resumo:
This paper discusses two projects, the first relating to tests on 'reinforced earth' conducted on the 1. 5 m radius centrifuge at U. M. I. S. T. and the second concerning a short pilot study on the T. R. R. L concept of 'anchored earth' carried out on the 5 m radius Cambridge Geotechnical Centrifuge. The paper proposes a role for centrifugal model testing in design evaluation, whether by the designer himself, his centrification authority, a rival patent holder, or a research worker.
Resumo:
This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Compound lean angles have been employed to achieve relatively low blade loading for hub and tip section and so reduce the secondary losses. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. Agreement between the simulations and the measurements has been found. The unsteady measurements indicate that there is a significant effect of the stator flow interaction in the downstream rotor blade. The transport of the stator viscous flow through the rotor blade row is described. Unsteady numerical simulations were found to be successful in predicting accurately the flow near the secondary flow interaction regions compared to steady simulations. A method to calculate the unsteady loss generated inside the blade row was developed from the steady numerical simulations. The contribution of various regions in the blade to the unsteady loss generation was evaluated. This method can assist the designer in identifying and optimizing the features of the flow that are responsible for the majority of the unsteady loss production. An analytical model was developed to quantify this effect for the vortex transport inside the downstream blade.