46 resultados para game design techniques
Resumo:
An investigation concerning suitable termination techniques for 4H-SiC trench JFETs is presented. Field plates, p+ floating rings and junction termination extension techniques are used to terminate 1.2kV class PiN diodes. The fabricated PiN diodes evaluated here have a similar design to trench JFETs. Therefore, the conclusions for PiN diodes can be applied to JFET structures as well. Numerical simulations are also used to illustrate the effect of the terminations on the diodes' blocking mode behaviour.
Modelling and simulation techniques for supporting healthcare decision making: a selection framework
Resumo:
This paper shows how computational techniques have been used to develop axi-symmetric, straight, sonic-line, minimum length micro nozzles that are suitable for laser micro-machining applications. Gas jets are used during laser micro-machining processing applications to shield the interaction zone between laser and workpiece material, and they determine the machining efficiency of such applications. The paper discusses the nature of laser-material interactions and the importance of using computational fluid dynamics to model pressure distributions in short nozzles that are used to deliver gas to the laser-material interaction zone. Experimental results are presented that highlight unique problems associated with laser micro machining using gas jets.
Muitiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
Resumo:
The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends: on the core simulator used; the GA itself is code independent.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
CLADP is an engineering software program developed at Cambridge University for the interactive computer aided design of feedback control systems. CLADP contains a wide range of tools for the analysis of complex systems, and the assessment of their performance when feedback control is applied, thus enabling control systems to be designed to meet difficult performance objectives. The range of tools within CLADP include the latest techniques in the field whose central theme is the extension of classical frequency domain concepts (well known and well proven for single loop systems) to multivariable or multiloop systems, and by making extensive use of graphical presentation information is provided in a readily understood form.
Resumo:
Two tutorial examples are presented which illustrate different methods of designing practical multivariable control systems using frequency-domain techniques. In the first case eigenvector alignment techniques are used to manipulate and shape the generalized Nyquist diagrams, while in the second case LQG theory in conjunction with singular value plots is employed. In both cases the designs are carried out on a modern computer-aided control-system design package.
Resumo:
Discusses a study conducted to determine the best development path for large wind turbine rotor design. Shape and number of blades, degrees of freedom allowed, and control strategy are considered. Manufacture and costs are also discussed. Two-bladed, stall-regulated, teetered rotors are more cost effective than three-bladed rotors. Single-bladed rotors can be even more cost-effective. No new manufacturing techniques are required. The most cost-effective rotor includes a hub constructed in wood/composite materials, bonded to the blades. There is strong incentive for the blade manufacturer to supply the complete rotor. (from author's abstract)
Resumo:
Several approaches to designing schedule H-infinity control systems are compared. These include a controller switching approach and also parameter scheduling of an observer representation of the controller. They are illustrated by application to a Generic VSTOI. Aircraft Model (GVAM) supplied by The Royal Aerospace Establishment (RAE) at Bedford. The switched design has been tested on the simulator at RAE Bedford. The linear H-infinity designs make use of a loop-shaping followed by robust stabilisation to additive perturbations of a normalised coprime factorisation of the shaped plans. The different scheduling approaches are compared with respect to achieved robust stability levels. performance and complexity of implementation.
Resumo:
For increasing the usability of a medical device the usability engineering standards IEC 60601-1-6 and IEC 62366 suggest incorporating user information in the design and development process. However, practice shows that integrating user information and the related investigation of users, called user research, is difficult in the field of medical devices. In particular, identifying the most appropriate user research methods is a difficult process. This difficulty results from the complexity of the medical device industry, especially with respect to regulations and standards, the characteristics of this market and the broad range of potential user research methods available from various research disciplines. Against this background, this study aimed at guiding designers and engineers in selecting effective user research methods according to their stage in the design process. Two approaches are described which reduce the complexity of method selection by summarizing the high number of methods into homogenous method classes. These approaches are closely connected to the medical device industry characteristic design phases and therefore provide the possibility of selecting design-phase- specific user research methods. In the first approach potential user research methods are classified after their characteristics in the design process. The second approach suggests a method summarization according to their similarity in the data collection techniques and provides an additional linkage to design phase characteristics. Both approaches have been tested in practice and the results show that both approaches facilitate user research method selection. © 2009 Springer-Verlag.