39 resultados para flow over bottom topography
Resumo:
Most of the current understanding of tip leakage flows has been derived from detailed cascade experiments. However, the cascade model is inherently approximate since it is difficult to simulate the boundary conditions present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. This problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer. More realistic tests can be performed on high-speed turbines, but the experimental fidelity and resolution achievable in such set-ups is limited. In order to examine the differences between cascade models and real-engine behavior, the influence of boundary conditions on the tip leakage flow in an unshrouded high pressure turbine rotor is investigated using RANS calculations. This study examines the influence of the rotor inlet condition and relative casing motion. A baseline calculation with a simplified inlet condition and no relative endwall motion exhibits similar behavior to cascade studies. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or relative casing motion. However when both of these conditions are applied simultaneously the pattern of leakage flow is very different, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving this change and the impact on leakage losses and modeling requirements. Copyright © 2013 by ASME.
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Supersonic engine intakes operating supercritically feature shock wave / boundary layer interactions (SBLIs), which are conventionally controlled using boundary layer bleed. The momentum loss of bleed flow causes high drag, compromising intake performance. Micro-ramp sub-boundary layer vortex generators (SBVGs) have been proposed as an alternative form of flow control for oblique SBLIs in order to reduce the bleed requirement. Experiments have been conducted at Mach 2.5 to characterise the flow details on such devices and investigate their ability to control the interaction between an oblique shock wave and the naturally grown turbulent boundary layer on the tunnel floor. Micro-ramps of four sizes with heights ranging from 25% to 75% of the uncontrolled boundary layer thickness were tested. The flow over all sizes of microramp was found to be similar, featuring streamwise counter-rotating vortices which entrain high momentum fluid, locally reducing the boundary layer displacement thickness. When installed ahead of the shock interaction it was found that the positioning of the micro-ramps is of limited importance. Micro-ramps did not eliminate flow separation. However, the previously two-dimensional separation was broken up into periodic three-dimensional separation zones. The interaction length was reduced and the pressure gradient across the interaction was increased.
Resumo:
The purpose of this thesis is to give answer to the question: why do riblets stop working for a certain size? Riblets are small surface grooves aligned in the mean direction of an overlying turbulent flow, designed specifically to reduce the friction between the flow and the surface. They were inspired by biological surfaces, like the oriented denticles in the skin of fastswimming sharks, and were the focus of a significant amount of research in the late eighties and nineties. Although it was found that the drag reduction depends on the riblet size scaled in wall units, the physical mechanisms implicated have not been completely understood up to now. It has been explained how riblets of vanishing size interact with the turbulent flow, producing a change in the drag proportional to their size, but that is not the regime of practical interest. The optimum performance is achieved for larger sizes, once that linear behavior has broken down, but before riblets begin adopting the character of regular roughness and increasing drag. This regime, which is the most relevant from a technological perspective, was precisely the less understood, so we have focused on it. Our efforts have followed three basic directions. First, we have re-assessed the available experimental data, seeking to identify common characteristics in the optimum regime across the different existing riblet geometries. This study has led to the proposal of a new length scale, the square root of the groove crosssection, to substitute the traditional peak-to-peak spacing. Scaling the riblet dimension with this length, the size of breakdown of the linear behavior becomes roughly universal. This suggests that the onset of the breakdown is related to a certain, fixed value of the cross-section of the groove. Second, we have conducted a set of direct numerical simulations of the turbulent flow over riblets, for sizes spanning the full drag reduction range. We have thus been able to reproduce the gradual transition between the different regimes. The spectral analysis of the flows has proven particularly fruitful, since it has made possible to identify spanwise rollers immediately above the riblets, which begin to appear when the riblet size is close to the optimum. This is a quite surprising feature of the flow, not because of the uniqueness of the phenomenon, which had been reported before for other types of complex and porous surfaces, but because most previous studies had focused on the detail of the flow above each riblet as a unit. Our novel approach has provided the adequate tools to capture coherent structures with an extended spanwise support, which interact with the riblets not individually, but collectively. We have also proven that those spanwise structures are responsible for the increase in drag past the viscous breakdown. Finally, we have analyzed the stability of the flow with a simplified model that connects the appearance of rollers to a Kelvin–Helmholtz-like instability, as is the case also for the flow over plant canopies and porous surfaces. In spite of the model emulating the presence of riblets only in an averaged, general fashion, it succeeds to capture the essential attributes of the breakdown, and provides a theoretical justification for the scaling with the groove cross-section.
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the experimental study of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed in the rough plates than the smooth plate, and the rough plates also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles over the rigid plate and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit encouraging similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. The simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2007 by Yu Liu and Ann P. Dowling.
Resumo:
The Lighthill theory is extended so that it may be used to determine the flow noise induced by a turbulent boundary layer over a plane homogeneous flexible surface. The influence of the surface properties and the mean flow on the sound generation is brought out explicitly through the use of a Green function. The form of the low-wavenumber wall-pressure spectrum on a rigid surface with an arbitrary mean flow profile is determined. The effect of a coating layer is investigated.
Resumo:
Concerns over climate change mean engineers need to understand the greenhouse gas emissions associated with infrastructure projects. Standard coefficients are increasingly used to calculate the embodied emissions of construction materials, but these are not generally appropriate to inherently variable earthworks. This paper describes a new tool that takes a bottom-up approach to calculating carbon dioxide emissions from earthworks operations. In the case of bulk earthworks this is predominantly from the fuel used by machinery moving materials already on site. Typical earthworks solutions are explored along with the impact of using manufactured materials such as lime.
Resumo:
Seeded zone-melt recrystallization using a dual electron beam system has been performed on silicon-on-insulator material, which was prepared with single-crystal silicon filling of the seed windows by selective epitaxial growth. The crystal quality has been assessed by a variety of microscopic techniques, and it is shown that single-crystal films 0.5-1.0 μm thick over 1.0 μm of isolating oxide may be prepared by this method. These films have considerably less lateral variation in thickness than standard material, in which the windows are not so filled. The filling method is suitable for both single- and multiple-layer silicon-on-insulator, and gives the advantages of excellent layer uniformity after recrystallization and improved planarity of the whole chip structure. Experiments using various amounts of seed window filling have shown that the lateral variations of silicon film thickness seen in unplanarized material are due to stress relief in the cap oxide when the silicon film is molten, rather than the effect previously postulated in which they were assumed to be due to the contraction of silicon on melting.
Resumo:
Prandtl's secondary mean motions of the second kind near an undulating surface were explained in terms of turbulent blocking effect and kinematic boundary conditions at the surface, and its order of magnitude was estimated. Isotropic turbulence is distorted by the undulating surface of wavelength λ and amplitude h with a low slope, so that h « λ. The prime mechanism for generating the mean flow is that the far-field Isotropic turbulence is distorted by the non-local blocking effect of the surface to become anisotropic axisymmetric turbulence near the surface with principal axis that is not aligned with the local curvature of the undulation. Then the local analysis can be applied and the mechanism is similar to the mean flow generation mechanism for homogeneous axisymmetric turbulence over a planer surface, i.e. gradients of the Reynolds stress caused by the turbulent blocking effect generate the mean motions. The results from this simple analysis are consistent with previous exact analysis in which the effects of curvature are strictly taken into account. The results also qualitatively agree with flow visualization over an undulating surface in a mixing-box.
Resumo:
Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.
Resumo:
A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.
Resumo:
This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy. Copyright © 2010 by ASME.
Resumo:
Concerns over climate change mean engineers need to understand the greenhouse gas emissions associated with infrastructure projects. Standard coefficients are increasingly used to calculate the embodied emissions of construction materials, but these are not generally appropriate to inherently variable earthworks. This paper describes a new tool that takes a bottom-up approach to calculating carbon dioxide emissions from earthworks operations. In the case of bulk earthworks this is predominantly from the fuel used by machinery moving materials already on site. Typical earthworks solutions are explored along with the impact of using manufactured materials such as lime.
Resumo:
Market competitiveness for aero engine power plant dictates that improvements in engine performance and reliability are guaranteed a priori by manufacturers. The requirement to accurately predict the life of engine components makes exacting demands of the internal air system, which must provide effective cooling over the engine duty cycle with the minimum consumption of compressor section air. Tests have been conducted at the University of Sussex using a turbine test facility which comprises a two stage turbine with an individual stage pressure ratio of 1.7:1. Main annulus air is supplied by an adapted Rolls-Royce Dart compressor at up to 440 K and 4.8 kg s-1. Cooling flow rates ranging from 0.71 to 1.46 Cw, ent, a disc entrainment parameter, have been used to allow ingress or egress dominated stator well flow conditions. The mechanical design of the test section allows internal cooling geometry to be rapidly re-configured, allowing the effect of jet momentum and coolant trajectory to be investigated. An important facet to this investigation is the use of CFD to model and analyse the flow structures associated with the cavity conditions tested, as well as to inform the design of cooling path geometry. This paper reports on the effectiveness of stator well coolant flow rate and delivery configurations using experimental data and also CFD analysis to better quantify the effect of stator well flow distribution on component temperatures. Copyright © 2011 by Rolls-Royce plc.