26 resultados para extreme weather events


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme temperatures are changing worldwide together with changes in the mean temperatures. This study investigates the long-term trends and variations of the monthly maximum and minimum temperatures and their effects on seasonal fluctuations in various climatological regions in India. The magnitude of the trends and their statistical significance were determined by parametric ordinary least square regression techniques and the variations were determined by the respective coefficient of variations. The results showed that the monthly maximum temperature increased, though unevenly, over the last century. Minimum temperature changes were more variable than maximum temperature changes, both temporally and spatially, with results of lesser significance. The results of this study are good indicators of Indian climate variability and its changes over the last century. © Springer-Verlag 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a companion paper (McRobie(2013) arxiv:1304.3918), a simple set of `elemental' estimators was presented for the Generalized Pareto tail parameter. Each elemental estimator: involves only three log-spacings; is absolutely unbiased for all values of the tail parameter; is location- and scale-invariant; and is valid for all sample sizes $N$, even as small as $N= 3$. It was suggested that linear combinations of such elementals could then be used to construct efficient unbiased estimators. In this paper, the analogous mathematical approach is taken to the Generalised Extreme Value (GEV) distribution. The resulting elemental estimators, although not absolutely unbiased, are found to have very small bias, and may thus provide a useful basis for the construction of efficient estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In economic decision making, outcomes are described in terms of risk (uncertain outcomes with certain probabilities) and ambiguity (uncertain outcomes with uncertain probabilities). Humans are more averse to ambiguity than to risk, with a distinct neural system suggested as mediating this effect. However, there has been no clear disambiguation of activity related to decisions themselves from perceptual processing of ambiguity. In a functional magnetic resonance imaging (fMRI) experiment, we contrasted ambiguity, defined as a lack of information about outcome probabilities, to risk, where outcome probabilities are known, or ignorance, where outcomes are completely unknown and unknowable. We modified previously learned pavlovian CS+ stimuli such that they became an ambiguous cue and contrasted evoked brain activity both with an unmodified predictive CS+ (risky cue), and a cue that conveyed no information about outcome probabilities (ignorance cue). Compared with risk, ambiguous cues elicited activity in posterior inferior frontal gyrus and posterior parietal cortex during outcome anticipation. Furthermore, a similar set of regions was activated when ambiguous cues were compared with ignorance cues. Thus, regions previously shown to be engaged by decisions about ambiguous rewarding outcomes are also engaged by ambiguous outcome prediction in the context of aversive outcomes. Moreover, activation in these regions was seen even when no actual decision is made. Our findings suggest that these regions subserve a general function of contextual analysis when search for hidden information during outcome anticipation is both necessary and meaningful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A location- and scale-invariant predictor is constructed which exhibits good probability matching for extreme predictions outside the span of data drawn from a variety of (stationary) general distributions. It is constructed via the three-parameter {\mu, \sigma, \xi} Generalized Pareto Distribution (GPD). The predictor is designed to provide matching probability exactly for the GPD in both the extreme heavy-tailed limit and the extreme bounded-tail limit, whilst giving a good approximation to probability matching at all intermediate values of the tail parameter \xi. The predictor is valid even for small sample sizes N, even as small as N = 3. The main purpose of this paper is to present the somewhat lengthy derivations which draw heavily on the theory of hypergeometric functions, particularly the Lauricella functions. Whilst the construction is inspired by the Bayesian approach to the prediction problem, it considers the case of vague prior information about both parameters and model, and all derivations are undertaken using sampling theory.