33 resultados para enzymatic hydrolysis beta-1,3-glucanases
Resumo:
Due to the keen interest in improving the high-speed and high-temperature performance of 1.3-μm wavelength lasers, we compare, for the first time, the material gain of three different competing active layer materials, namely InGaAsP-InGaAsP, AlGaInAs-AlGaInAs, and InGaAsN-GaAs. We present a theoretical study of the gain of each quantum-well material system and present the factors that influence the material gain performance of each system. We find that AIGaInAs and InGaAsN active layer materials have substantially better material gain performance than the commonly used InGaAsP, both at room temperature and at high temperature.
Resumo:
The potential of 1.3-μm AlGaInAs multiple quantum-well (MQW) laser diodes for uncooled operation in high-speed optical communication systems is experimentally evaluated by characterizing the temperature dependence of key parameters such as the threshold current, transparency current density, optical gain and carrier lifetime. Detailed measurements performed in the 20°C-100°C temperature range indicate a localized T0 value of 68 K at 98°C for a device with a 2.8μm ridge width and 700-μm cavity length. The transparency current density is measured for temperatures from 20°C to 60°C and found to increase at a rate of 7.7 A·cm -2 · °C-1. Optical gain characterizations show that the peak modal gain at threshold is independent of temperature, whereas the differential gain decreases linearly with temperature at a rate of 3 × 10-4 A-1·°C-1. The differential carrier lifetime is determined from electrical impedance measurements and found to decrease with temperature. From the measured carrier lifetime we derive the monomolecular (A), radiative (B), and nonradiative Auger (C) recombination coefficients and determine their temperature dependence in the 20 °C-80 °C range. Our study shows that A is temperature independent, B decreases with temperature, and C exhibits a less pronounced increase with temperature. The experimental observations are discussed and compared with theoretical predictions and measurements performed on other material systems. © 2005 IEEE.
Resumo:
We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 μm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses. © 2003 Optical Society of America.
Resumo:
In this paper, the static and dynamic performance of multi quantum-well (MQW) 1.3 μm InGaAsP Fabry Perot lasers is assessed experimentally and theoretically to identify the mechanisms responsible for impaired high speed performance at elevated temperature. Initially, threshold currents and spontaneous emission spectra are characterized for a range of temperatures from room temperature to 85 °C to indicate a significant increase in non-radiative current contributions. Preliminary estimates are made for the contributions of leakage and Auger recombination rates, found from the dependence of integrated spontaneous emission with carrier density. Drift-diffusion modelling is found to accurately predict the trend of threshold currents over temperature. Using gain modelling good agreement is found between the measured and predicted integrated spontaneous emission intensity. Gain measurements at 85 °C indicate a reduction in RIN frequency to 63% of the 25 °C value which matches well with experimental small signal performance.
Resumo:
Piezocomposites that can operate at frequencies above 30 MHz without spurious modes are required in order to develop sufficiently sensitive high frequency arrays for high resolution imaging. However, scaling down of conventional piezocomposite fabrication techniques becomes increasingly difficult as dimensions decrease with increasing frequency. The approach presented here is to use micro-moulded 1-3 piezocomposites and a distribution of piezoelectric segment size and separation. Innovative approaches to composite pattern design, based on a randomized spatial distribution, are presented. Micro-moulding techniques are shown to be suitable for fabricating composites with dimensions required for high frequency composites. Randomized piezocomposite patterns are modeled and are shown to suppress spurious modes.
Resumo:
A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.
Resumo:
We present the characterisation of a hydrogel forming family of benzene 1,3,5-tricarboxamide (BTA) aromatic carboxylic acid derivatives. The simple, easy to synthesise compounds presented here exhibit consistent gel formation at low concentrations through the use of a pH trigger.
Resumo:
The role of the collagen-platelet interaction is of crucial importance to the haemostatic response during both injury and pathogenesis of the blood vessel wall. Of particular interest is the high affinity interaction of the platelet transmembrane receptor, alpha 2 beta 1, responsible for firm attachment of platelets to collagen at and around injury sites. We employ single molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) to study the interaction of the I-domain from integrin alpha 2 beta 1 with a synthetic collagen related triple-helical peptide containing the high-affinity integrin-binding GFOGER motif, and a control peptide lacking this sequence, referred to as GPP. By utilising synthetic peptides in this manner we are able to study at the molecular level subtleties that would otherwise be lost when considering cell-to-collagen matrix interactions using ensemble techniques. We demonstrate for the first time the complexity of this interaction as illustrated by the complex multi-peaked force spectra and confirm specificity using control blocking experiments. In addition we observe specific interaction of the GPP peptide sequence with the I-domain. We propose a model to explain these observations.