42 resultados para discontinuous dynamical systems
Resumo:
A dynamical system can exhibit structure on multiple levels. Different system representations can capture different elements of a dynamical system's structure. We consider LTI input-output dynamical systems and present four representations of structure: complete computational structure, subsystem structure, signal structure, and input output sparsity structure. We then explore some of the mathematical relationships that relate these different representations of structure. In particular, we show that signal and subsystem structure are fundamentally different ways of representing system structure. A signal structure does not always specify a unique subsystem structure nor does subsystem structure always specify a unique signal structure. We illustrate these concepts with a numerical example. © 2011 AACC American Automatic Control Council.
Resumo:
This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.
Resumo:
We study the problem of finding a local minimum of a multilinear function E over the discrete set {0,1}n. The search is achieved by a gradient-like system in [0,1]n with cost function E. Under mild restrictions on the metric, the stable attractors of the gradient-like system are shown to produce solutions of the problem, even when they are not in the vicinity of the discrete set {0,1}n. Moreover, the gradient-like system connects with interior point methods for linear programming and with the analog neural network studied by Vidyasagar (IEEE Trans. Automat. Control 40 (8) (1995) 1359), in the same context. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Dissipativity is an essential concept of systems theory. The paper provides an extension of dissipativity, named differential dissipativity, by lifting storage functions and supply rates to the tangent bundle. Differential dissipativity is connected to incremental stability in the same way as dissipativity is connected to stability. It leads to a natural formulation of differential passivity when restricting to quadratic supply rates. The paper also shows that the interconnection of differentially passive systems is differentially passive, and provides preliminary examples of differentially passive electrical systems. © IFAC.
Resumo:
Synchronization is now well established as representing coherent behaviour between two or more otherwise autonomous nonlinear systems subject to some degree of coupling. Such behaviour has mainly been studied to date, however, in relatively low-dimensional discrete systems or networks. But the possibility of similar kinds of behaviour in continuous or extended spatiotemporal systems has many potential practical implications, especially in various areas of geophysics. We review here a range of cyclically varying phenomena within the Earth's climate system for which there may be some evidence or indication of the possibility of synchronized behaviour, albeit perhaps imperfect or highly intermittent. The exploitation of this approach is still at a relatively early stage within climate science and dynamics, in which the climate system is regarded as a hierarchy of many coupled sub-systems with complex nonlinear feedbacks and forcings. The possibility of synchronization between climate oscillations (global or local) and a predictable external forcing raises important questions of how models of such phenomena can be validated and verified, since the resulting response may be relatively insensitive to the details of the model being synchronized. The use of laboratory analogues may therefore have an important role to play in the study of natural systems that can only be observed and for which controlled experiments are impossible. We go on to demonstrate that synchronization can be observed in the laboratory, even in weakly coupled fluid dynamical systems that may serve as direct analogues of the behaviour of major components of the Earth's climate system. The potential implications and observability of these effects in the long-term climate variability of the Earth is further discussed. © 2010 Springer-Verlag Berlin Heidelberg.
Resumo:
While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.
Resumo:
Networks of controlled dynamical systems exhibit a variety of interconnection patterns that could be interpreted as the structure of the system. One such interpretation of system structure is a system's signal structure, characterized as the open-loop causal dependencies among manifest variables and represented by its dynamical structure function. Although this notion of structure is among the weakest available, previous work has shown that if no a priori structural information is known about the system, not even the Boolean structure of the dynamical structure function is identifiable. Consequently, one method previously suggested for obtaining the necessary a priori structural information is to leverage knowledge about target specificity of the controlled inputs. This work extends these results to demonstrate precisely the a priori structural information that is both necessary and sufficient to reconstruct the network from input-output data. This extension is important because it significantly broadens the applicability of the identifiability conditions, enabling the design of network reconstruction experiments that were previously impossible due to practical constraints on the types of actuation mechanisms available to the engineer or scientist. The work is motivated by the proteomics problem of reconstructing the Per-Arnt-Sim Kinase pathway used in the metabolism of sugars. © 2012 IEEE.
Resumo:
This paper studies the dynamical response of a rotary drilling system with a drag bit, using a lumped parameter model that takes into consideration the axial and torsional vibration modes of the bit. These vibrations are coupled through a bit-rock interaction law. At the bit-rock interface, the cutting process introduces a state-dependent delay, while the frictional process is responsible for discontinuous right-hand sides in the equations governing the motion of the bit. This complex system is characterized by a fast axial dynamics compared to the slow torsional dynamics. A dimensionless formulation exhibits a large parameter in the axial equation, enabling a two-time-scales analysis that uses a combination of averaging methods and a singular perturbation approach. An approximate model of the decoupled axial dynamics permits us to derive a pseudoanalytical expression of the solution of the axial equation. Its averaged behavior influences the slow torsional dynamics by generating an apparent velocity weakening friction law that has been proposed empirically in earlier work. The analytical expression of the solution of the axial dynamics is used to derive an approximate analytical expression of the velocity weakening friction law related to the physical parameters of the system. This expression can be used to provide recommendations on the operating parameters and the drillstring or the bit design in order to reduce the amplitude of the torsional vibrations. Moreover, it is an appropriate candidate model to replace empirical friction laws encountered in torsional models used for control. © 2009 Society for Industrial and Applied Mathematics.