213 resultados para cold filter plugging point
Resumo:
Household-level water treatment and safe storage systems (HWTS) are simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Using a case study example of a biosand filter program in southern India, system dynamics modelling is shown to be a useful tool to map the inter-relationships of different critical factors and to understand the dissemination dynamics. It is found that the co-existence of expanding quickly and achieving financial sustainability appears to be difficult to achieve under the current program structure.
Resumo:
Optimal Bayesian multi-target filtering is in general computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency was proposed by Whiteley et. al. Numerical examples were presented for two scenarios, including a challenging nonlinear observation model, to support the claim. This paper studies the theoretical properties of this auxiliary particle implementation. $\mathbb{L}_p$ error bounds are established from which almost sure convergence follows.
Resumo:
Optimal Bayesian multi-target filtering is, in general, computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), we present a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency. Numerical examples are presented for two scenarios, including a challenging nonlinear observation model.