23 resultados para cluster-based routing protocol
Resumo:
A computer can assist the process of design by analogy by recording past designs. The experience these represent could be much wider than that of designers using the system, who therefore need to identify potential cases of interest. If the computer assists with this lookup, the designers can concentrate on the more interesting aspect of extracting and using the ideas which are found. However, as the knowledge base grows it becomes ever harder to find relevant cases using a keyword indexing scheme without knowing precisely what to look for. Therefore a more flexible searching system is needed.
If a similarity measure can be defined for the features of the designs, then it is possible to match and cluster them. Using a simple measure like co-occurrence of features within a particular case would allow this to happen without human intervention, which is tedious and time- consuming. Any knowledge that is acquired about how features are related to each other will be very shallow: it is not intended as a cognitive model for how humans understand, learn, or retrieve information, but more an attempt to make effective, efficient use of the information available. The question remains of whether such shallow knowledge is sufficient for the task.
A system to retrieve information from a large database is described. It uses co-occurrences to relate keywords to each other, and then extends search queries with similar words. This seems to make relevant material more accessible, providing hope that this retrieval technique can be applied to a broader knowledge base.
Resumo:
We propose an uncooled DWDM system where errors from uncontrolled laser mode-hopping are avoided by using a control protocol based on monitoring SMSR. We describe a proof-of-principle demonstration of a novel uncooled 50GHz DWDM system. © 2011 IEEE.
Resumo:
An increasingly common scenario in building speech synthesis and recognition systems is training on inhomogeneous data. This paper proposes a new framework for estimating hidden Markov models on data containing both multiple speakers and multiple languages. The proposed framework, speaker and language factorization, attempts to factorize speaker-/language-specific characteristics in the data and then model them using separate transforms. Language-specific factors in the data are represented by transforms based on cluster mean interpolation with cluster-dependent decision trees. Acoustic variations caused by speaker characteristics are handled by transforms based on constrained maximum-likelihood linear regression. Experimental results on statistical parametric speech synthesis show that the proposed framework enables data from multiple speakers in different languages to be used to: train a synthesis system; synthesize speech in a language using speaker characteristics estimated in a different language; and adapt to a new language. © 2012 IEEE.
Resumo:
We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We present algorithms for tracking and reasoning of local traits in the subsystem level based on the observed emergent behavior of multiple coordinated groups in potentially cluttered environments. Our proposed Bayesian inference schemes, which are primarily based on (Markov chain) Monte Carlo sequential methods, include: 1) an evolving network-based multiple object tracking algorithm that is capable of categorizing objects into groups, 2) a multiple cluster tracking algorithm for dealing with prohibitively large number of objects, and 3) a causality inference framework for identifying dominant agents based exclusively on their observed trajectories.We use these as building blocks for developing a unified tracking and behavioral reasoning paradigm. Both synthetic and realistic examples are provided for demonstrating the derived concepts. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet process mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
A 3x3 SOA-based switch is demonstrated for routing both radio-over-fiber and digital signals simultaneously. High extinction ratio digital baseband signals are transmitted and sufficient linearity is found for high performance RF signal distribution. © 2006 Optical Society of America.