34 resultados para backward pump


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiconductor optical amplifier monolithically integrated with a distributed feedback pump laser is used for non-degenerate four wave mixing applications. Experimental results are presented which illustrate the use of this compact device for both wavelength conversion and dispersion compensation applications at high data rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we develop a new Rao-Blackwellized Monte Carlo smoothing algorithm for conditionally linear Gaussian models. The algorithm is based on the forward-filtering backward-simulation Monte Carlo smoother concept and performs the backward simulation directly in the marginal space of the non-Gaussian state component while treating the linear part analytically. Unlike the previously proposed backward-simulation based Rao-Blackwellized smoothing approaches, it does not require sampling of the Gaussian state component and is also able to overcome certain normalization problems of two-filter smoother based approaches. The performance of the algorithm is illustrated in a simulated application. © 2012 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a variation of the thermally actuated flux pump and the linear type magnetic flux pump (LTMFP), the circular type magnetic flux pump (CTMFP) device is proposed to magnetize a circular shape type-II superconducting thin film and bulk. The basic concept is the same as the thermally actuated flux pump: a circularly symmetric traveling magnetic field is generated below a circular shape superconductor to increase its trapping field. However, this traveling field is created by the three phase windings instead of heating gadolinium block. Apart from the LTMFP, the three phase windings are wound concentrically instead of linearly. The speed of the traveling field is controlled by the AC frequency and the magnitude of the field is controlled by the magnitudes of AC currents. In addition, a coil with DC current is wound around the three phase windings to provide a background field. The concept design is presented in this paper. The magnetic waveforms are analysed numerically by the COMSOL 3.5a software. The impedances of the three phase windings are calculated and a corresponding circuit design is presented. This rig can be used as an advanced tool to study the flux pump behavior of a circular shape superconductor. © 2002-2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents numerical analysis of the thermally actuated superconducting flux pump. Visualization of the behavior of the magnetic flux helps our understanding of flux injection mechanism. In addition, in order to confirm validity of the result, we conducted a preliminary flux pump experiment. This result qualitatively agrees well with the experimental one. The flux pump system utilizes a particular behavior that permeability of some materials such as Gadolinium is sensitive to the temperature. In this paper a simple heater is used to control the flux pump system. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of a superconducting flux pump is relatively straightforward. A small magnetic field repeatedly applied will lead to a much larger field being trapped within the superconductor. This field is limited by the volume of the superconductor and by its critical current but not by the excitation field. Here we will describe a new technique which facilitates the creation of high magnetic fields and where the magnitude of the trapped field is limited by the superconductor not the magnetising field. The technique is demonstrated using measurements taken using samples of bulk YBCO as YBCO has a very high irreversibility field and has the potential to trap high magnetic fields. The technique could be applied to other superconductors such as BSCCO or MgB2 and in other forms such as thin or thick films. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular-type magnetic flux pump (CTMFP) device was built to study the flux dynamics on a 2-inch-diameter YBCO thin film. This CTMFP is composed of two CTMFP coils, with each CTMFP coil containing concentric three-phase windings and a dc winding. We connected the three-phase windings to the output of a commercial inverter. By changing the output frequency of the inverter, the sweeping speed of the circular-shaped travelling magnetic wave can be changed. The connection of the phase coils follows the forward consequence, so that the circular-shaped travelling magnetic wave travels inward to the center. The output frequency f was changed from f = 0.01 to 1000.0 Hz. The YBCO sample was sandwiched between the two CTMFP coils to experience the circular-shaped travelling magnetic wave. It was found that the increase of the flux density in the center of the film is independent of the sweeping frequency. In high frequency f = 1000.0Hz, even if the waveform had changed a lot, the increment is still the same as in low frequencies. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermally actuated flux pump is an efficient method to magnetize the high-temperature superconductor (HTS) bulk without applying a strong magnetic field. A thermal material is employed as a magnetic switch, which decides the efficiency of the system. To measure the Curie temperatures of those samples without destroying them, the nondestructive Curie temperature (NDT) measurement was developed. The Curie temperature of gadolinium (Gd) was measured by the NDT method and compared to the results from superconducting quantum interference device (SQUID). Because the SQUID tests require the sample to be cut into small piece, a constant shape of the testing sample could not be guaranteed. The demagnetizing effect was considered to remove the shape effect. The intrinsic permeability was modified from the apparent susceptibility by considering demagnetization. A thermal material with low Curie temperature, Mg 0.15Cu0.15Zn0.7Ti0.04Fe 1.96O4, was synthesized and its performance was tested and compared with previous thermal materials. Comparisons of three thermal materials, including the Curie temperature and the permeability, will be detailed in the paper. © 2002-2011 IEEE.