28 resultados para audio-visual information


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new co-clustering problem of images and visual features. The problem involves a set of non-object images in addition to a set of object images and features to be co-clustered. Co-clustering is performed in a way that maximises discrimination of object images from non-object images, thus emphasizing discriminative features. This provides a way of obtaining perceptual joint-clusters of object images and features. We tackle the problem by simultaneously boosting multiple strong classifiers which compete for images by their expertise. Each boosting classifier is an aggregation of weak-learners, i.e. simple visual features. The obtained classifiers are useful for object detection tasks which exhibit multimodalities, e.g. multi-category and multi-view object detection tasks. Experiments on a set of pedestrian images and a face data set demonstrate that the method yields intuitive image clusters with associated features and is much superior to conventional boosting classifiers in object detection tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces during concrete construction. Their existence undermines the desired appearance and visual uniformity of architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ own criteria and experience. Often, inspectors may make different assessments even when inspecting the same concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a result, the methodology presented in this paper can increase the reliability of concrete surface quality assessment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While searching for objects, we combine information from multiple visual modalities. Classical theories of visual search assume that features are processed independently prior to an integration stage. Based on this, one would predict that features that are equally discriminable in single feature search should remain so in conjunction search. We test this hypothesis by examining whether search accuracy in feature search predicts accuracy in conjunction search. Subjects searched for objects combining color and orientation or size; eye movements were recorded. Prior to the main experiment, we matched feature discriminability, making sure that in feature search, 70% of saccades were likely to go to the correct target stimulus. In contrast to this symmetric single feature discrimination performance, the conjunction search task showed an asymmetry in feature discrimination performance: In conjunction search, a similar percentage of saccades went to the correct color as in feature search but much less often to correct orientation or size. Therefore, accuracy in feature search is a good predictor of accuracy in conjunction search for color but not for size and orientation. We propose two explanations for the presence of such asymmetries in conjunction search: the use of conjunctively tuned channels and differential crowding effects for different features.