182 resultados para aluminium alloys


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PD6493:1991 fracture assessment have been performed for a range of large-scale fracture mechanics tests conducted at TWI in the past. These tests cover several material groups, including pressure vessel steels, pipeline steels, stainless steels and aluminium alloys, including parent material and weldments. Ninety-two wide plate and pressure vessel tests have been assessed, following Levels 1, 2 and 3 PD6493:1991 procedures. In total, over 400 assessments have been performed, examining many features of the fracture assessment procedure including toughness input, proof testing, residual stress assumptions and stress state (tension, bending and biaxial). In all cases the large scale tests have been assessed as one would actual structures: i.e., based on lower bound toughness values obtained from small scale fracture toughness specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructures and mechanical properties have been studied in aluminium containing a fine dispersion of alumina particles, deformed by cold-rolling to strains between 1.4 and 3.5. The microstructure was characterised by TEM. The deformation structures evolved very rapidly, forming a nanostructured material, with fine subgrains about 0.2 μm in diameter and a fraction of high-angle boundaries which was already high at a strain of 1.4, but continued to increase with rolling strain. The yield stress and ductility of the rolled materials were measured in tension, and properties were similar for all materials. Yield stress measurements were correlated with estimates made using microstructural models. The role of small particles in forming and stabilising the deformation structure is discussed. This nanostructured cold-deformed alloy has mechanical properties which are usefully enhanced at comparatively low cost. This gives it, and similar particle-strengthened alloys, good potential for commercial exploitation. © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.