28 resultados para administrative procedure
Resumo:
Model-based optical motion capture systems require knowledge of the position of the markers relative to the underlying skeleton, the lengths of the skeleton's limbs, and which limb each marker is attached to. These model parameters are typically assumed and entered into the system manually, although techniques exist for calculating some of them, such as the position of the markers relative to the skeleton's joints. We present a fully automatic procedure for determining these model parameters. It tracks the 2D positions of the markers on the cameras' image planes and determines which markers lie on each limb before calculating the position of the underlying skeleton. The only assumption is that the skeleton consists of rigid limbs connected with ball joints. The proposed system is demonstrated on a number of real data examples and is shown to calculate good estimates of the model parameters in each. © 2004 Elsevier B.V. All rights reserved.
Resumo:
A two-stage H∞-based design procedure is described which uses a normalized coprime factor approach to robust stabilization of linear systems. A loop-shaping procedure is incroporated to allow the specification of performance characteristics. Theoretical justification of this technique and an outline of the design methodology are given.
Resumo:
Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied through the time-stamp information embedded in the video streams. User-generated videos shot using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. Our first contribution is a synchronization technique which tries to establish correspondence between feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. We evaluate performance using a number of real video recordings and show that our method is able to synchronize to within 1 sec, which is significantly better than previous approaches. Our second contribution is a robust and unsupervised view-invariant activity recognition descriptor that exploits recurrence plot theory on spatial tiles. The descriptor is individually shown to better characterize the activities from different views under occlusions than state-of-the-art approaches. We combine this descriptor with our proposed synchronization method and show that it can further refine the synchronization index. © 2013 ACM.