120 resultados para Zebra chip
Resumo:
There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boronimplanted shallow pn-junctions in silicon technology. Meanwhile the interest in flash lamp annealing (FLA) in the millisecond range spread out into other fields related to silicon technology and beyond. This paper reports on recent experiments regarding shallow junction engineering in germanium, annealing of ITO layers on glass and plastic foil to form an conductive layer as well as investigations which we did during the last years in the field of wide band gap semiconductor materials (SiC, ZnO). A more common feature evolving from our work was related to the modeling of wafer stress during millisecond thermal processing with flash lamps. Finally recent achievements in the field of silicon-based light emission basing on Metal-Oxide-Semiconductor Light Emitting Devices will be reported. © 2007 IEEE.
Resumo:
Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ∼ 5cm/s and droplet pumping speeds of ∼lcm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications. © 2010 Materials Research Society.
Resumo:
Board-level optical links are an attractive alternative to their electrical counterparts as they provide higher bandwidth and lower power consumption at high data rates. However, on-board optical technology has to be cost-effective to be commercially deployed. This study presents a chip-to-chip optical interconnect formed on an optoelectronic printed circuit board that uses a simple optical coupling scheme, cost-effective materials and is compatible with well-established manufacturing processes common to the electronics industry. Details of the link architecture, modelling studies of the link's frequency response, characterisation of optical coupling efficiencies and dynamic performance studies of this proof-of-concept chip-to-chip optical interconnect are reported. The fully assembled link exhibits a -3 dBe bandwidth of 9 GHz and -3 dBo tolerances to transverse component misalignments of ±25 and ±37 μm at the input and output waveguide interfaces, respectively. The link has a total insertion loss of 6 dBo and achieves error-free transmission at a 10 Gb/s data rate with a power margin of 11.6 dBo for a bit-error-rate of 10 -12. The proposed architecture demonstrates an integration approach for high-speed board-level chip-to-chip optical links that emphasises component simplicity and manufacturability crucial to the migration of such technology into real-world commercial systems. © 2012 The Institution of Engineering and Technology.
Resumo:
Acoustic wave devices were fabricated incorporating ZnO films deposited using both a standard rf magnetronand a novel High Target Utilisation (HiTUS) Sputtering System. Our results demonstrated the feasibility of using a single SAW-based actuation mechanism for both microfluidics and sensing. To further improve the sensitivity of our bio-sensors we have also investigated the use of Thin Film Bulk Acoustic Resonators.
Resumo:
We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e^2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.
Resumo:
Cascaded 4×4 SOA switches with on-chip power monitoring exhibit potential for lowpower 16×16 integrated switches. Cascaded operation at 10Gbit/s with an IPDR of 8.5dB and 79% lower power consumption than equivalent all-active switches is reported © 2013 OSA.