27 resultados para Wikipedia, information retrieval, focused link discovery
Resumo:
There is growing interest in Discovery Services for locating RFID and supply chain data between companies globally, to obtain product lifecycle information for individual objects. Discovery Services are heralded as a means to find serial-level data from previously unknown parties, however more realistically they provide a means to reduce the communications load on the information services, the network and the requesting client application. Attempts to design a standardised Discovery Service will not succeed unless security is considered in every aspect of the design. In this paper we clearly show that security cannot be bolted-on in the form of access control, although this is also required. The basic communication model of the Discovery Service critically affects who shares what data with whom, and what level of trust is required between the interacting parties. © 2009 IEEE.
Resumo:
The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
Several research studies have been recently initiated to investigate the use of construction site images for automated infrastructure inspection, progress monitoring, etc. In these studies, it is always necessary to extract material regions (concrete or steel) from the images. Existing methods made use of material's special color/texture ranges for material information retrieval, but they do not sufficiently discuss how to find these appropriate color/texture ranges. As a result, users have to define appropriate ones by themselves, which is difficult for those who do not have enough image processing background. This paper presents a novel method of identifying concrete material regions using machine learning techniques. Under the method, each construction site image is first divided into regions through image segmentation. Then, the visual features of each region are calculated and classified with a pre-trained classifier. The output value determines whether the region is composed of concrete or not. The method was implemented using C++ and tested over hundreds of construction site images. The results were compared with the manual classification ones to indicate the method's validity.
Resumo:
This book explores the processes for retrieval, classification, and integration of construction images in AEC/FM model based systems. The author describes a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval that have been integrated into a novel method for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks. objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
Compared with construction data sources that are usually stored and analyzed in spreadsheets and single data tables, data sources with more complicated structures, such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our definition and vision for advanced data analysis addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data analysis on text-based, image-based, web-based, and network-based construction sources. It is shown in this paper that particular data preparation, representation, and analysis operations should be identified, and integrated with careful problem investigations and scientific validation measures in order to provide general frameworks in support of information search and knowledge discovery from such information-abundant data sources.
Resumo:
Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.
Resumo:
Spoken content in languages of emerging importance needs to be searchable to provide access to the underlying information. In this paper, we investigate the problem of extending data fusion methodologies from Information Retrieval for Spoken Term Detection on low-resource languages in the framework of the IARPA Babel program. We describe a number of alternative methods improving keyword search performance. We apply these methods to Cantonese, a language that presents some new issues in terms of reduced resources and shorter query lengths. First, we show score normalization methodology that improves in average by 20% keyword search performance. Second, we show that properly combining the outputs of diverse ASR systems performs 14% better than the best normalized ASR system. © 2013 IEEE.