30 resultados para Weights and measures.


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structured precision modelling is an important approach to improve the intra-frame correlation modelling of the standard HMM, where Gaussian mixture model with diagonal covariance are used. Previous work has all been focused on direct structured representation of the precision matrices. In this paper, a new framework is proposed, where the structure of the Cholesky square root of the precision matrix is investigated, referred to as Cholesky Basis Superposition (CBS). Each Cholesky matrix associated with a particular Gaussian distribution is represented as a linear combination of a set of Gaussian independent basis upper-triangular matrices. Efficient optimization methods are derived for both combination weights and basis matrices. Experiments on a Chinese dictation task showed that the proposed approach can significantly outperformed the direct structured precision modelling with similar number of parameters as well as full covariance modelling. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a novel model for the spatio-temporal clustering of trajectories based on motion, which applies to challenging street-view video sequences of pedestrians captured by a mobile camera. A key contribution of our work is the introduction of novel probabilistic region trajectories, motivated by the non-repeatability of segmentation of frames in a video sequence. Hierarchical image segments are obtained by using a state-of-the-art hierarchical segmentation algorithm, and connected from adjacent frames in a directed acyclic graph. The region trajectories and measures of confidence are extracted from this graph using a dynamic programming-based optimisation. Our second main contribution is a Bayesian framework with a twofold goal: to learn the optimal, in a maximum likelihood sense, Random Forests classifier of motion patterns based on video features, and construct a unique graph from region trajectories of different frames, lengths and hierarchical levels. Finally, we demonstrate the use of Isomap for effective spatio-temporal clustering of the region trajectories of pedestrians. We support our claims with experimental results on new and existing challenging video sequences. © 2011 IEEE.