24 resultados para WE 344
Resumo:
The drive to reduce carbon emissions from domestic housing has led to a recent shift of focus from new-‐build to retrofit. However there are two significant differences. Firstly more work is needed to retrofit existing housing to the same energy efficiency standards as new-‐build. Secondly the remaining length of service life is potentially shorter. This implies that the capital expenditure – both financial and carbon -‐ of retrofit may be disproportionate to the savings gained over the remaining life. However the Government’s definition of low and zero carbon continues to exclude the capital (embodied) carbon costs of construction, which has resulted in a lack of data for comparison. The paper addresses this gap by reporting the embodied carbon costs of retrofitting four individual pilot properties in Rampton Drift, part of an Eco-‐Town Demonstrator Project in Cambridgeshire. Through collecting details of the materials used and their journeys from manufacturer to site, the paper conducts a ‘cradle-‐to-‐gate’ life cycle carbon assessment for each property. The embodied carbon figures are calculated using a software tool being developed by the Centre for Sustainable Development at the University of Cambridge. The key aims are to assess the real embodied carbon costs of retrofit of domestic properties, and to test the new tool; it is hoped that the methodology, the tool and the specific findings will be transferable to other projects. Initial changes in operational energy as a result of the retrofit works will be reported and compared with the embodied carbon costs when presenting this paper.
Resumo:
We have built a four-pole high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) in our lab. At this stage, the HTS PMSM uses two 2G HTS racetrack coils, which are YBCO wires, type 344 from AMSC, and four conventional copper coils as stator windings. 75 YBCO bulks are mounted on the surface of the rotor. After the pulsed field magnetization system had been developed and tested in our lab in 2011, the rotor can trap a four-pole magnetic field. This makes HTS bulks possible for motor application, other than HTS coils. The HTS PMSM can successfully run at a low speed of around 150 rpm for an initial test. This paper states theoretical and practical works on the HTS PMSM's operation including HTS motor drive development and its application. © 2002-2011 IEEE.
Resumo:
Soil liquefaction following large earthquakes is a major contributor to damage to infrastructure and economic loss, as borne out by the earthquakes in Japan and New Zealand in 2011. While extensive research has been conducted on soil liquefaction and our understanding of liquefaction has been advancing, several uncertainties remain. In this paper the basic premise that liquefaction is an 'undrained' event will be challenged. Evidence will be offered based on dynamic centrifuge tests to show that rapid settlements occur both in level ground and for shallow foundations. It will also be shown that the definition of liquefaction based on excess pore pressure generation and the subsequent classification of sites as liquefiable and non-liquefiable is not satisfactory, as centrifuge test data shows that both loose and dense sand sites produce significant excess pore pressure. Experimental evidence will be presented that shows that the permeability of sands increases rapidly at very low effective stresses to allow for rapid drainage to take place from liquefied soil. Based on these observations a micro-mechanical view of soil liquefaction that brings together the Critical State view of soil liquefaction and the importance of dynamic loading will be presented. © 2012 Indian Geotechnical Society.
Resumo:
This paper examines the sources of uncertainly in models used to predict vibration from underground railways. It will become clear from this presentation that by varying parameters by a small amount, consistent with uncertainties in measured data, the predicted vibration levels vary significantly, often by more than 10dB. This error cannot be forecast. Small changes made to soil parameters (Compressive and Shear Wave velocities and density), to slab bending stiffness and mass and to the measurement position give rise to changes in vibration levels of more than lOdB. So if 10dB prediction error results from small uncertainties in soil parameters and measurement position it cannot be sensible to rely on prediction models for accuracy better than 10dB. The presentation will demonstrate in real time the use of the new - and freely-available - PiP software for calculating vibration from railway tunnels in real time.