206 resultados para Voltage stabilizing circuits
Resumo:
This paper investigates a nonlinear amplitude saturation behavior in an electrostatically transduced, silicon MEMS disk resonator operating in its secondary elliptical bulk-mode (SEBM) at 3.932 MHz towards its implementation as an all-mechanical automatic gain control (AGC) element. The nonlinear vibration behavior of the SEBM mode is experimentally observed in open-loop testing such that above a threshold small signal drive voltage at a given polarization voltage, the vibration amplitude of the SEBM mode saturates. We also study this nonlinearity in an oscillator circuit designed such that the driving power level at the resonator input can be manually tuned as the circuit operates. The measurements of the voltage amplitudes show a clear transition from the linear to the nonlinear saturation region as the driving power is increased. Short-term frequency stability measurements were also conducted for different v ac and the resulting Allan deviation plots show an improvement in the short-term stability from 1.4 ppb in the linear region to 0.4 ppb in the amplitude saturation region. © 2013 IEEE.
Resumo:
Current-voltage behaviour of oxide TFTs is modeled based on trap-limited conduction and percolation theories. The mobility has a power-law dependence, in which percolation controls the exponent while trap states determine constant term in the power law. The proposed model, which is fully physically-based, provides a good agreement with measured transistor characteristics as well as transient operations of fabricated pixel test circuits for oxide-based OLED displays. © 2013 Society for Information Display.
Resumo:
This work describes the deposition and characterisation of semi-insulating oxygen-doped silicon films for the development of high voltage polycrystalline silicon (poly-Si) circuitry on glass. The performance of a novel poly-Si High Voltage Thin Film Transistor (HVTFT) structure, incorporating a layer of semi-insulating material, has been investigated using a two dimensional device simulator. The semi-insulating layer increases the operating voltage of the HVTFT structure by linearising the potential distribution in the device offset region. A glass compatible semi-insulating layer, suitable for HVTFT applications, has been deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The as-deposited films are furnace annealed at 600°C which is the maximum process temperature. By varying the N2O/SiH4 ratio the conductivity of the annealed films can be accurately controlled up to a maximum of around 10-7 Ω-1cm-1. Helium dilution of the reactant gases improves both film uniformity and reproducibility. Raman analysis shows the as-deposited and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-Doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties.
Resumo:
The paper describes a semianalytic slope delay model for CMOS switch-level timing verification. It is characterised by classification of the effects of the input slope, internal size and load capacitance of a logic gate on delay time, and then the use of a series of carefully chosen analytic functions to estimate delay times under different circumstances. In the field of VLSI analysis, this model achieves improvements in speed and accuracy compared with conventional approaches to transistor-level and switch-level simulation.
Resumo:
Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.