206 resultados para Vibro-acoustic
Resumo:
This paper discusses the development of a computationally efficient numerical method for predicting the acoustics of rattle events upfront in the design cycle. The method combines Finite Elements, Boundary Elements and SEA and enables the loudness of a large number of rattle events to be efficiently predicted across a broad frequency range. A low frequency random vibro-acoustic model is used in conjunction with various closed form analytical expressions in order to quickly predict impact probabilities and locations. An existing method has been extended to estimate the statistics of the contact forces across a broad frequency range. Finally, broadband acoustic radiation is predicted using standard low, mid and high frequency vibro-acoustic methods and used to estimate impact loudness. The approach is discussed and a number of validation examples are presented.
Resumo:
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.