33 resultados para Vegetable extracts. Corrosion inhibitors. AISI 1020 carbon steel. linear polarization resistence


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Production of steel and aluminium creates 10% of global carbon emissions from energy and processes. Demand is likely to double by 2050, but climate scientists are recommending absolute reductions of at least 50% and these are Increasingly entering law. How can reductions of this order happen? Only 10-20% savings can be expected in liquid metal production, so the primary industry is pursuing carbon sequestration as the main solution. However, this Is as yet unproven at scale, and as well as carrying some risk, the capital and operating costs are likely to be high, but are as yet unknown. In parallel with these strategies we can also examine whether we can reduce demand for liquid metal. 'Material efficiency' may allow delivery of existing services with less requirement for metal, for instance through designing products that use less metal, reducing process scrap, diverting scrap for other use, re-using components or delaying end of life. Overall demand reduction could occur if goods were used more intensely, alternative means were used to deliver the same services, or total demand were constrained. The paper analyses all possible options, to define and evaluate scenarios that meet the 2050 target, and discuss the steps required to bring them about. The paper concludes with suggestions for key areas where future research In metal forming can support a future low carbon economy. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cambridge University's Gordon Laboratory, in collaboration with Fibertech and the Defence Science and Technology Laboratory in the UK, has developed a novel melt spun fiber bore called 'Fibrecore', fabricated entirely from stainless steel with thin faceplates. Fibrecore is typically manufactured by 5mm-long and 70μm thick stainless steel fibers, produced by a melt overflow process. Its entirely metallic construction allows spot welding and tungsten inert gas welding without difficulty. Fibrecore exhibits different energy absorption mechanisms such as core cushioning, core-faceplate delamination, and plastic faceplate deformation, often in a concertina-like fashion. Its low-cost, high structural efficiency and good energy absorption characteristics make it attractive for a range of commercial and military applications. Such applications being evaluated include vehicle body panels, exhaust system noise reduction, low cost filters, and lightweight physical protection. In addition to these characteristics, Fibrecore exhibits properties such as corrosion protection, vibrational damping, and thermal insulation, which also extend its applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetrahedral amorphous carbon (ta-C) thin films are a promising material for use as biocompatible interfaces in applications such as in-vivo biosensors. However, the functionalization of ta-C film surface, which is a pre-requisite for biosensors, remains a big challenge due to its chemical inertness. We have investigated the bio-functionalization of ta-C films fabricated under specific physical conditions through the covalent attachment of functional biomolecular probes of peptide nucleic acid (PNA) to ta-C films, and the effect of fabrication conditions on the bio-functionalization. The study showed that the functional bimolecular probes such as protected long-chain ω-unsaturated amine (TFAAD) can be covalently attached to the ta-C surface through a well-defined structure. With the given fabrication process, electrochemical methods can be applied to the detection of biomolecular interaction, which establishes the basis for the development of stable, label-free biosensors. © 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rationale behind this work is to design an implant device, based on a ferromagnetic material, with the potential to deform in vivo promoting osseointegration through the growth of a healthy periprosthetic bone structure. One of the primary requirements for such a device is that the material should be non-inflammatory and non-cytotoxic. In the study described here, we assessed the short-term cellular response to 444 ferritic stainless steel; a steel, with a very low interstitial content and a small amount of strong carbide-forming elements to enhance intergranular corrosion resistance. Two different human cell types were used: (i) foetal osteoblasts and (ii) monocytes. Austenitic stainless steel 316L, currently utilised in many commercially available implant designs, and tissue culture plastic were used as the control surfaces. Cell viability, proliferation and alkaline phosphatase activity were measured. In addition, cells were stained with alizarin red and fluorescently-labelled phalloidin and examined using light, fluorescence and scanning electron microscopy. Results showed that the osteoblast cells exhibited a very similar degree of attachment, growth and osteogenic differentiation on all surfaces. Measurement of lactate dehydrogenase activity and tumour necrosis factor alpha protein released from human monocytes indicated that 444 stainless steel did not cause cytotoxic effects or any significant inflammatory response. Collectively, the results suggest that 444 ferritic stainless steel has the potential to be used in advanced bone implant designs. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon emissions from industry are dominated by production of goods in steel, cement plastic, paper, and aluminum. Demand for these materials is anticipated to double at least by 2050, by which time global carbon emissions must be reduced by at least 50%. To evaluate the challenge of meeting this target the global flows of these materials and their associated emissions are projected to 2050 under five technical scenarios. A reference scenario includes all existing and emerging efficiency measures but cannot provide sufficient reduction. The application of carbon sequestration to primary production proves to be sufficient only for cement The emissions target can always be met by reducing demand, for instance through product life extension, material substitution, or "light-weighting". Reusing components shows significant potential particularly within construction. Radical process innovation may also be possible. The results show that the first two strategies, based on increasing primary production, cannot achieve the required emissions reductions, so should be balanced by the vigorous pursuit of material efficiency to allow provision of increased material services with reduced primary production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many mining operations (e.g. excavation, drilling, tunnelling, rock crushing) metallic components are forced against abrasive rocks in a complex motion. This study examines the relative importance of combined rolling and sliding motion in the two-body abrasive wear of a low carbon tempered martensitic steel against rock counterfaces. A novel wear test rig has been used to vary the amount of rolling and sliding motion between a rotating steel cylinder and a counter-rotating sandstone (highly abrasive) or limestone (much less abrasive) disc. Weight-loss measurements reveal that the wear rate of the steel increases as the amount of motion against the rock counterface is reduced from pure sliding to approximately 50% sliding (and approximately 50% rolling). Scanning electron microscopy shows that when the amount of motion is reduced from pure sliding to approximately 50% sliding the topographical and sub-surface physical properties of the worn steel and rock surfaces are modified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the structural behavior of precracked reinforced concrete (RC) T-beams strengthened in shear with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. It reports on seven tests on unstrengthened and strengthened RC T-beams, identifying the influence of load history, beam depth, and percentage of longitudinal steel reinforcement on the structural behavior. The experimental results indicate that the contributions of the external CFRP sheets to the shear force capacity can be significant and depend on most of the investigated variables. This study also investigates the accuracy of the prediction of the fiber-reinforced polymer (FRP) contribution in ACI 440.2R-08, UK Concrete Society TR55, and fib Bulletin 14 design guidelines for shear strengthening. A comparison of predicted values with experimental results indicates that the guidelines can overestimate the shear contribution of the externally bonded FRP system. © 2012, American Concrete Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Half of the world's annual production of steel is used in constructing buildings and infrastructure. Producing this steel causes significant amounts of carbon dioxide to be released into the atmosphere. Climate change experts recommend this amount be halved by 2050; however steel demand is predicted to have doubled by this date. As process efficiency improvements will not reach the required 75% reduction in emissions per unit steel output, new methods must be examined to deliver service using less steel production. To apply such methods successfully to construction, it must first be known where steel is used currently within the industry. This information is not available so a methodology is proposed to estimate it from known data. Results are presented for steel flows by product for ten construction sectors for both the UK and the world in 2006. An estimate for steel use within a 'typical' building is also published for the first time. Industrial buildings and utility infrastructure are identified as the largest end-uses of steel, while superstructure is confirmed as the main use of steel in a building. The results highlight discrepancies in previous steel estimates and life-cycle assessments, and will inform future research on lowering demand for steel, hence reducing carbon emissions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.