144 resultados para Thermal Cracking
Resumo:
This paper presents results from experimental measurements on radiative transfer in FeCrAlY (a steel based high temperature alloy) foams having high porosity (95%) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short wavelength regime (<25 μm). Whilst the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. An analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size (or cell ligament diameter) and porosity identified as the two key parameters that dictate the foam radiative properties. Close agreement between the predicted effective foam conductivity due to radiation alone and that measured is observed. At fixed porosity, the radiative conductivity of the metal foam increases with increasing cell size and temperature. © 2004 Elsevier Ltd.All rights reserved.
Resumo:
The effective thermal conductivity of steel alloy FeCrAlY (Fe-20 wt.% Cr-5 wt.% Al-2 wt.% Y-20 wt.%) foams with a range of pore sizes and porosities was measured between 300 and 800 K, under both vacuum and atmospheric conditions. The results show that the effective thermal conductivity increases rapidly as temperature is increased, particularly in the higher temperature range (500-800 K) where the transport of heat is dominated by thermal radiation. The effective conductivity at temperature 800 K can be three times higher than that at room temperature (300 K). Results obtained under vacuum conditions reveal that the effective conductivity increases with increasing pore size or decreasing porosity. The contribution of natural convection to heat conduction was found to be significant, with the effective thermal conductivity at ambient pressure twice the value of vacuum condition. The results also show that natural convection in metal foams is strongly dependent upon porosity. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600-700°C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100°C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material. © 1999 American Institute of Physics.
Resumo:
Data on the occurrence of solidification cracking in low alloy steel welds have been analysed using a classification neural network based on a Bayesian framework. It has thereby been possible to express quantitatively the effect of variables such as the chemical composition, welding conditions, and weld geometry, on the tendency for solidification cracking during solidification. The ability of the network to express the relationship in a suitably non-linear form is shown to be vital in reproducing known experimental phenomena. © 1996 The Institute of Materials.