20 resultados para Structural phase transition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

New chiral compounds 3R-methylcyclohexanone derivatives were synthesized. These compounds were revealed to exhibit the mesomorphic behavior within rather wide temperature ranges. Types of formed mesophases and phase transition temperatures were determined by polarizing microscopy, differential scanning calorimetry and small angle scattering of X-ray. Mesomorphic properties of the new chiral compounds were compared with those for the chiral 2-arylidene derivatives of 3R,6R-3-methyl-6-isopropylcyclohexanone (d-isomenthone) studied earlier. Distinctions between these two types of compounds in an ability to form mesophases and also in twisting properties as chiral dopants in induced cholesteric mesophases are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recently introduced nested sampling algorithm allows the direct and efficient calculation of the partition function of atomistic systems. We demonstrate its applicability to condensed phase systems with periodic boundary conditions by studying the three dimensional hard sphere model. Having obtained the partition function, we show how easy it is to calculate the compressibility and the free energy as functions of the packing fraction and local order, verifying that the transition to crystallinity has a very small barrier, and that the entropic contribution of jammed states to the free energy is negligible for packing fractions above the phase transition. We quantify the previously proposed schematic phase diagram and estimate the extent of the region of jammed states. We find that within our samples, the maximally random jammed configuration is surprisingly disordered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coherence properties of a transient electron-hole state developing during superradiance emission in semiconductor laser structures have been studied experimentally using a Michelson interferometer and Young's classic double-slit configuration. The results demonstrate that, in the lasers studied, the first-order correlation function, which quantifies spatial coherence, approaches unity for superradiant emission and is 0.2-0.5 for laser emission. The supercoherence is due to long-range ordering upon the superradiant phase transition. © 2012 Kvantovaya Elektronika and Turpion Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents a new concept of locomotion for wheeled or legged robots through an object-free space. The concept is inspired by the behaviour of spiders forming silk threads to move in 3D space. The approach provides the possibility of variation in thread diameter by deforming source material, therefore it is useful for a wider coverage of payload by mobile robots. As a case study, we propose a technology for descending locomotion through a free space with inverted formation of threads in variable diameters. Inverted thread formation is enabled with source material thermoplastic adhesive (TPA) through thermally-induced phase transition. To demonstrate the feasibility of the technology, we have designed and prototyped a 300-gram wheeled robot that can supply and deform TPA into a thread and descend with the thread from an existing hanging structure. Experiment results suggest repeatable inverted thread formation with a diameter range of 1.1-4.5 mm, and a locomotion speed of 0.73 cm per minute with a power consumption of 2.5 W. © 2013 IEEE.