28 resultados para Structural and magnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the growth of III-V nanowires by MOCVD and the structural and optical properties of these nanowires. Binary and ternary nanowires of GaAs, InAs, InP, AlGaAs and InGaAs are achieved. We discuss the nucleation and growth issues involved in fabricating high quality nanowires suitable for device applications. We have fabricated and characterised a variety of axial and radial heterostructures including GaAs/InGaAs superlattices, and GaAs/AlGaAs core-shell and core-multishell nanowires. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the growth, structural properties and photoluminescence of novel GaAs/AlGaAs radial heterostructure nanowires, fabricated by metalorganic chemical vapour deposition. The effect of growth temperature on nanowire morphology is discussed. Strong photoluminescence is observed from GaAs nanowires with AlGaAs shells. Core/multishell nanowires, of GaAs cores clad in several alternating layers of thick AlGaAs barrier shells and thin GaAs quantum well shells, exhibit a blue-shifted photoluminescence peak believed to arise from quantum confinement effects. A novel two-temperature growth procedure for obtaining GaAs cores is introduced, and other nanowire heterostructures are addressed. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the structural properties and photoluminescence of novel axial and radial heterostructure III-V nanowires, fabricated by metalorganic chemical vapour deposition. Segments of InGaAs have been incorporated within GaAs nanowires, to create axial heterostructure nanowires which exhibit strong photoluminescence. Photoluminescence is observed from radial heterostructure nanowires (core-shell nanowires), consisting of GaAs cores with AlGaAs shells. Core-multishell nanowires, of GaAs cores clad in several alternating layers of thick AlGaAs barrier shells and thin GaAs quantum well shells, exhibit a blue-shifted photoluminescence peak arising from quantum confinement effects. © 2006 Crown Copyright.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er 2O3 thin films deposited by magnetron sputtering have been studied. In spite of the well-known high reactivity of rare earth oxides towards silicon, films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the silicon substrate. The evolution of the properties of the Er2O3 films due to thermal annealing processes in oxygen ambient performed at temperatures in the range of 800-1200°C has been investigated in detail. The existence of well defined annealing conditions (rapid treatments at a temperature of 1100°C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated; under these conditions, the thermal process has a beneficial effect on both structural and optical properties of the film, and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as-deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. Finally, the conditions leading to a reaction of Er2O3 with the substrate have been also identified, and evidences about the formation of silicate-like phases have been collected. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several experimental techniques have been used in order to characterize the properties of multifilamentary Bi-2223 / Ag tapes. Pristine samples were investigated by electrical resistivity, current-voltage characteristics and DC magnetic moment measurements. Much emphasis is placed on comparing transport (direct) and magnetic (indirect) methods for determining the critical current density as well as the irreversibility line and resolving usual lacks of consistency due to the difference in measurement techniques and data analysis. The effect of an applied magnetic field, with various strengths and directions, is also studied and discussed. Next, the same combination of experiments was performed on bent tapes in order to bring out relevant information regarding the intergranular coupling. A modified Brandt model taking into account different types of defects within the superconducting filaments is proposed to reconciliate magnetic and transport data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An orthorhombic DyMnO3 single crystal has been studied in magnetic fields up to 14 T and between 3 K and room temperature. The field dependent ordering temperature of Dy moments is deduced. The paramagnetic Curie Weiss behavior is related mainly to the Dy3+sublattice whereas the Mn sublattice contribution plays a secondary role. DC magnetization measurements show marked anisotropic features, related to the anisotropic structure of a cubic system stretched along a body diagonal, with a magnetic easy axis parallel to the crystallographic b axis. A temperature and field dependent spin flop transition is observed below 9 K, when relatively weak magnetocrystalline anisotropy is overcome by magnetic fields up to 1.6 T. © 2013 Elsevier B.V.