106 resultados para Strong light
Resumo:
In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.
Resumo:
The optical efficiency of GaN-based multiple quantum well (MQW) and light emitting diode (LED) structures grown on Si(111) substrates by metal-organic vapor phase epitaxy was measured and compared with equivalent structures on sapphire. The crystalline quality of the LED structures was comprehensively characterized using x-ray diffraction, atomic force microscopy, and plan-view transmission electron microscopy. A room temperature photoluminescence (PL) internal quantum efficiency (IQE) as high as 58% has been achieved in an InGaN/GaN MQW on Si, emitting at 460 nm. This is the highest reported PL-IQE of a c-plane GaN-based MQW on Si, and the radiative efficiency of this sample compares well with similar structures grown on sapphire. Processed LED devices on Si also show good electroluminescence (EL) performance, including a forward bias voltage of ∼3.5 V at 20 mA and a light output power of 1 mW at 45 mA from a 500 ×500 μm2 planar device without the use of any additional techniques to enhance the output coupling. The extraction efficiency of the LED devices was calculated, and the EL-IQE was then estimated to have a maximum value of 33% at a current density of 4 A cm-2, dropping to 30% at a current density of 40 A cm-2 for a planar LED device on Si emitting at 455 nm. The EL-IQE was clearly observed to increase as the structural quality of the material increased for devices on both sapphire and Si substrates. © 2011 American Institute of Physics.
Resumo:
Increasing the field of view of a holographic display while maintaining adequate image size is a difficult task. To address this problem, we designed a system that tessellates several sub-holograms into one large hologram at the output. The sub-holograms we generate is similar to a kinoform but without the paraxial approximation during computation. The sub-holograms are loaded onto a single spatial light modulator consecutively and relayed to the appropriate position at the output through a combination of optics and scanning reconstruction light. We will review the method of computer generated hologram and describe the working principles of our system. Results from our proof-of-concept system are shown to have an improved field of view and reconstructed image size. ©2009 IEEE.
Resumo:
Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.
Resumo:
The rationale behind this work is to design an implant device, based on a ferromagnetic material, with the potential to deform in vivo promoting osseointegration through the growth of a healthy periprosthetic bone structure. One of the primary requirements for such a device is that the material should be non-inflammatory and non-cytotoxic. In the study described here, we assessed the short-term cellular response to 444 ferritic stainless steel; a steel, with a very low interstitial content and a small amount of strong carbide-forming elements to enhance intergranular corrosion resistance. Two different human cell types were used: (i) foetal osteoblasts and (ii) monocytes. Austenitic stainless steel 316L, currently utilised in many commercially available implant designs, and tissue culture plastic were used as the control surfaces. Cell viability, proliferation and alkaline phosphatase activity were measured. In addition, cells were stained with alizarin red and fluorescently-labelled phalloidin and examined using light, fluorescence and scanning electron microscopy. Results showed that the osteoblast cells exhibited a very similar degree of attachment, growth and osteogenic differentiation on all surfaces. Measurement of lactate dehydrogenase activity and tumour necrosis factor alpha protein released from human monocytes indicated that 444 stainless steel did not cause cytotoxic effects or any significant inflammatory response. Collectively, the results suggest that 444 ferritic stainless steel has the potential to be used in advanced bone implant designs. © 2011 Elsevier Ltd.