30 resultados para String quartets.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enhanced physical model of the bowed string presented previously [1] is explored. It takes into account: the width of the bow, the angular motion of the string, bow-hair elasticity and string bending stiffness. The results of an analytical investigation of a model system - an infinite string sticking to a bow of finite width and driven on one side of the bow - are compared with experimental results published by Cremer [2] and reinterpreted here. Comparison shows that both the width of the bow and the bow-hair elasticity have a large impact on the reflection and transmission behaviour. In general, bending stiffness plays a minor role. Furthermore, a method of numerical simulation of the stiff string bowed with a bow of finite width is presented along with some preliminary results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development is described of a computer-controlled bowing machine that can bow a string with a range of gestures that match or exceed the capabilities of a human violinist. Example measurements of string vibration under controlled bowing conditions are shown, including a Schelleng diagram and a set of Guettler diagrams, for the open D string of a cello. For some results a rosin-coated rod was used in place of a conventional bow, to provide quantitative data for comparison with theoretical predictions. The results show qualitative consistency with the predictions of Schelleng and Guettler, but details are revealed that go beyond the limitations of existing models. © S. Hirzel Verlag · EAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. (c) 2007 Acoustical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After nearly 15 years of research effort, High Temperature Superconductors (HTS) are finding a wide range of practical applications. A clear understanding of the factors controlling the current carrying capacity of these materials is a prerequisite to their successful technological development. The critical current density (Jc) in HTS is directly dependent on the structure and pinning of the Flux Line Lattice (FLL) in these materials. This thesis presents an investigation of the Jc anisotropy in HTS. The use of thin films grown on off c-axis (vicinal) substrates allowed the effect of current directions outside the cuprate planes to be studied. With this experimental geometry Berghuis, et al. (Phys. Rev. Lett. 79, 12, pg. 2332) observed a striking flux channelling effect in vicinal YBa2Cu3O7-δ (YBCO) films. By confirming, and extending, this observation, it is demonstrated that this is an intrinsic effect. The results obtained, appear to fit well with the predictions of a field angle dependent cross-over from a three dimensional rectilinear FLL to a kinked lattice of strings and pancakes. The pinning force density for movement of strings inside the cuprate planes is considerably less than that on vortex pancake elements. When the FLL is entirely string-like this reduced pinning leads to the observed channelling minima. It is observed that anti-phase boundaries enhance the Jc in vicinal YBCO films by strongly pinning vortex strings. The effect on the FLL structure cross-over of increasing anisotropy has been elucidated using de-oxygenated vicinal YBCO films. Intriguingly, the counter intuitive prediction that the range of applied field angle for which the kinked lattice is fully developed reduces with increasing anisotropy, appears to be confirmed. Although vortex channelling cannot be observed in c-axis YBCO films, the pinning force density for vortex string channelling has been extracted by observing string dragging. By studying the effect of rotating the applied field at a constant angle to the cuprate planes, it is possible to observe the cross-over into the string pancake regime in c-axis films. In the 3D region, the observed behaviour is well explained by the anisotropic Ginzburg-Landau model. Measurements were also made on thin films of the much more anisotropic Bi 2Sr2CaCu2O8+x material, grown on vicinal substrates. The absence of any flux channelling effect and clear adherence to the expected Kes-Law behaviour in the observed Jc characteristics does not provide evidence for the existence of the predicted ‘crossing lattice’ in Bi 2Sr2CaCu2O8+x .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of a bowed string depends, among other things, on the frequency, impedance and internal damping of torsional waves on the string. Very little published information is available about these quantities, especially the torsional damping. Measurements of all relevant torsional properties have been made on cello strings of three different constructions. These show that the torsional modes are harmonically spaced to reasonable accuracy, and that the Q factors are approximately equal for all modes of a given string. These torsional Q factors are roughly an order of magnitude smaller than those of the transverse modes of the same string. The torsional wave speed varies somewhat with the tension in the string, decreasing with higher tension. The damping factors are not significantly influenced by tension. These results have been expressed in terms of a novel "reflection function" [1] suitable for direct incorporation into simulations of the bowing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over recent years academia and industry have engaged with the challenge of model testing deepwater structures at conventional scales. One approach to the limited depth problem has been to truncate the lines. This concept will be introduced, highlighting the need to better understand line dynamic processes. The type of line truncation developed here models the upper sections of each line in detail, capturing wave action and all coupling effects with the vessel, terminating to an approximate analytical model that aims to simulate the remainder of the line. A rationale for this is that in deep water transverse elastic waves of a line are likely to decay before they are reflected at the seabed because of nonlinear hydrodynamic drag forces. The first part of this paper is centered on verification of this rationale. A simplified model of a mooring line that describes the transverse dynamics in wave frequency is used, adopting the equation of motion of an inextensible taut string. The line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it can be useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. This is followed by developing a truncation mechanism, formulating an end approximation that can reproduce the correct impedance, had the line been continuous to full depth. It has been found that below a certain length criterion, which is also universal, the transverse vibrational characteristics for each line are inertia driven. As such the truncated model can assume a linear damper whose coefficient depends on the line properties and frequency of vibration. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vortex breaking has traditionally been studied for non-uniform critical current densities, although it may also appear due to non-uniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density J for any arbitrary orientation of the transport current and the magnetic field. If J is above a certain critical value, J(c), the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2Cu3O7-delta (YBCO) low-angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension is an element of(l) and compared it to existing predictions based on the vortex structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model tests for global design verification of deepwater floating structures cannot be made at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation techniques. In such a method the upper sections of each line are modelled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model, that aims to simulate the remainder of the line. The rationale for this is that in deep water the transverse elastic waves of a line are likely to decay before they are reflected at the seabed. The focus of this paper is the verification of this rationale and the ongoing work, which is considering ways to produce a truncation model. Transverse dynamics of a mooring line are modelled using the equations of motion of an inextensible taut string, submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. Nonlinear hydrodynamic damping is included; bending and VIV effects are neglected. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it is very useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. Initial efforts in developing a truncated model show that a linearized numerical solution in the frequency domain matches very closely the exact benchmark. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A group of mobile robots can localize cooperatively, using relative position and absolute orientation measurements, fused through an extended Kalman filter (ekf). The topology of the graph of relative measurements is known to affect the steady-state value of the position error covariance matrix. Classes of sensor graphs are identified, for which tight bounds for the trace of the covariance matrix can be obtained based on the algebraic properties of the underlying relative measurement graph. The string and the star graph topologies are considered, and the explicit form of the eigenvalues of error covariance matrix is given. More general sensor graph topologies are considered as combinations of the string and star topologies, when additional edges are added. It is demonstrated how the addition of edges increases the trace of the steady-state value of the position error covariance matrix, and the theoretical predictions are verified through simulation analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several recent control applications consider the coordination of subsystems through local interaction. Often the interaction has a symmetry in state space, e.g. invariance with respect to a uniform translation of all subsystem values. The present paper shows that in presence of such symmetry, fundamental properties can be highlighted by viewing the distributed system as the discrete approximation of a partial differential equation. An important fact is that the symmetry on the state space differs from the popular spatial invariance property, which is not necessary for the present results. The relevance of the viewpoint is illustrated on two examples: (i) ill-conditioning of interaction matrices in coordination/consensus problems and (ii) the string instability issue. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the difficulties in model testing deepwater structures at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation. Passive truncation has traditionally been the preferred method by industry; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. Vibration decay of transverse elastic waves due to fluid drag forces is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Initially a simplified taut string model is assumed for which the line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a general guideline for the truncation length criterion, which is suitable for any kind of line with any top motion. The focus of this paper is to extend this work to a more complex line configuration of a conventional deepwater mooring line and so enhance the generality of the truncation guideline. The paper will close with an example case study of a spread mooring system, applying this method to create an equivalent numerical model at a reduced depth that replicates exactly the static and dynamic characteristics of the full depth system. Copyright © 2012 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.