21 resultados para Stochastic processes -- Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bubbles and balloons are two examples of structures that feature a pressure difference across the skin, a thin, tensioned membrane, and a doubly curved interface surface. While mathematical models have been formulated for bubble vibrations, no such model exists for balloon vibrations. This paper reviews a model of bubble vibrations, and compares its predicted natural frequencies and modeshapes to those of a rubber balloon. It is shown that the bubble model consistently underpredicts the balloon's natural frequencies, and it is concluded that the nonlinear elasticity present in the balloon skin accounts for this result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses road damage caused by heavy commercial vehicles. Chapter 1 presents some important terminology and a brief historical review of road construction and vehicle-road interaction, from ancient times to the present day. The main types of vehicle-generated road damage, and the methods that are used by pavement engineers to analyze them are discussed in Chapter 2. Attention is also given to the main features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Chapter 3 reviews the effects on road damage of vehicle features which can be studied without consideration of vehicle dynamics. These include gross vehicle weight, axle and tire configurations, tire contact conditions and static load sharing in axle group suspensions. The dynamic tire forces generated by heavy vehicles are examined in Chapter 4. The discussion includes their simulation and measurement, their principal characteristics, the effects of tires and suspension design on dynamic forces, and the potential benefits of using advanced suspensions for minimizing dynamic tire forces. Chapter 5 discusses methods for estimating the effects of dynamic tire forces on road damage. The two main approaches are either to examine the statistics of the forces themselves; or to calculate the response of a pavement model to the forces, and to calculate the resulting wear using a material damage model. The issues involved in assessing vehicles for 'road friendliness' are discussed in Chapter 6. Possible assessment methods include measuring strains in an instrumented pavement traversed by the vehicle, measuring dynamic tire forces, or measuring vehicle parameters such as the 'natural frequency' and 'damping ratio'. Each of these measurements involves different assumptions and analysis methods for converting the results into some measure of road damage. Chapter 7 includes a summary of the main conclusions of the paper and recommendations for tire and suspension design, road design and construction, and for vehicle regulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.