67 resultados para State-based Specifications


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production of DSSCs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The partially observable Markov decision process (POMDP) has been proposed as a dialogue model that enables automatic improvement of the dialogue policy and robustness to speech understanding errors. It requires, however, a large number of dialogues to train the dialogue policy. Gaussian processes (GP) have recently been applied to POMDP dialogue management optimisation showing an ability to substantially increase the speed of learning. Here, we investigate this further using the Bayesian Update of Dialogue State dialogue manager. We show that it is possible to apply Gaussian processes directly to the belief state, removing the need for a parametric policy representation. In addition, the resulting policy learns significantly faster while maintaining operational performance. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of ΔEt 0.3 eV and with a density of state distribution as Dt(Et-j)=Dt0exp(-ΔEt/ kT)with Dt0 = 5.02 × 1011 cm-2 eV-1. Such a model is useful for developing simulation tools for circuit design. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensor scheduling problem can be formulated as a controlled hidden Markov model and this paper solves the problem when the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. The aim is to minimise the variance of the estimation error of the hidden state w.r.t. the action sequence. We present a novel simulation-based method that uses a stochastic gradient algorithm to find optimal actions. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the observed data may be used to estimate the parameters of the model. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed for this task accompanied with a discussion of their advantages and limitations.