30 resultados para Solid-state absorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We exfoliate graphite in both aqueous and non-aqueous environments through mild sonication followed by centrifugation. The dispersions are enriched with monolayers. We mix them with polymers, followed by slow evaporation to produce optical quality composites. Nonlinear optical measurements show similar to 5% saturable absorption. The composites are then integrated into fiber laser cavities to generate 630 fs pulses at 1.56 mu m. This shows the viability of solution phase processing for graphene based photonic devices. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe studies of new nanostructured materials consisting of carbon nanotubes wrapped in sequential coatings of two different semiconducting polymers, namely, poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT). Using absorption spectroscopy and steady-state and ultrafast photoluminescence measurements, we demonstrate the role of the different layer structures in controlling energy levels and charge transfer in both solution and film samples. By varying the simple solution processing steps, we can control the ordering and proportions of the wrapping polymers in the solid state. The resulting novel coaxial structures open up a variety of new applications for nanotube blends and are particularly promising for implementation into organic photovoltaic devices. The carbon nanotube template can also be used to optimize both the electronic properties and morphology of polymer composites in a much more controlled fashion than achieved previously, offering a route to producing a new generation of polymer nanostructures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classical high voltage devices fabricated on SOI substrates suffer from a backside coupling effect which could result in premature breakdown. This phenomenon becomes more prominent if the structure is an IGBT which features a p-type injector. To suppress the premature breakdown due to crowding of electro-potential lines within a confined SOI/buried oxide structure, the partial SOI (PSOI) technique is being introduced. This paper analyzes the off-state behavior of an n-type Superjunction (SJ) LIGBT fabricated on PSOI substrate. During the initial development stage the SJ LIGBT was found to have very high leakage. This was attributed to the back and side coupling effects. This paper discusses these effects and shows how this problem could be successfully addressed with minimal modifications of device layout. The off-state performance of the SJ LIGBT at different temperatures is assessed and a comparison to an equivalent LDMOSFET is given. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past decade, passively modelocked optically pumped vertical external cavity surface emitting lasers (OPVECSELs), sometimes referred to as semiconductor disk lasers (OP-SDLs), impressively demonstrated the potential for generating femtosecond pulses at multi-Watt average output powers with gigahertz repetition rates. Passive modelocking with a semiconductor saturable absorber mirror (SESAM) is well established and offers many advantages such as a flexible design of the parameters and low non-saturable losses. Recently, graphene has emerged as an attractive wavelength-independent alternative saturable absorber for passive modelocking in various lasers such as fiber or solid-state bulk lasers because of its unique optical properties. Here, we present and discuss the modelocked VECSELs using graphene saturable absorbers. The broadband absorption due to the linear dispersion of the Dirac electrons in graphene makes this absorber interesting for wavelength tunable ultrafast VECSELs. Such widely tunable modelocked sources are in particularly interesting for bio-medical imaging applications. We present a straightforward approach to design the optical properties of single layer graphene saturable absorber mirrors (GSAMs) suitable for passive modelocking of VECSELs. We demonstrate sub-500 fs pulses from a GSAM modelocked VECSEL. The potential for broadband wavelength tuning is confirmed by covering 46 nm in modelocked operation using three different VECSEL chips and up to 21 nm tuning in pulsed operation is achieved with one single gain chip. A linear and nonlinear optical characterization of different GSAMs with different absorption properties is discussed and can be compared to SESAMs. © 2014 SPIE.