43 resultados para Small Scale Industries


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present full volumetric (three-dimensional) time-resolved (+one-dimensional) measurements of the velocity field in a large water mixing tank, allowing us to assess spatial and temporal rotational energy (enstrophy) and turbulent energy dissipation intermittency. In agreement with previous studies, highly intermittent behavior is observed, with intense coherent flow structures clustering in the periphery of larger vortices. However, further to previous work the full volumetric measurements allow us to separate out the effects of advection from other effects, elucidating not only their topology but also the evolution of these intense events, through the local balance of stretching and diffusion. These findings contribute toward a better understanding of the intermittency phenomenon, which should pave the way for more accurate models of the small-scale motions based on an understanding of the underlying flow physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study concerns the wrinkling performance of thin membranes for use as novel reflectors in space-based telescopes. We introduce small-scale experiments for inducing and interrogating wrinkling patterns in at membranes, and we capture these details computationally by performing a range of finite element analysis. The overall aim is to assess the sophistication of modelling, to verify the feasibility of a small-diameter reector concept proposed in accompanying work. © 2009 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PD6493:1991 fracture assessment have been performed for a range of large-scale fracture mechanics tests conducted at TWI in the past. These tests cover several material groups, including pressure vessel steels, pipeline steels, stainless steels and aluminium alloys, including parent material and weldments. Ninety-two wide plate and pressure vessel tests have been assessed, following Levels 1, 2 and 3 PD6493:1991 procedures. In total, over 400 assessments have been performed, examining many features of the fracture assessment procedure including toughness input, proof testing, residual stress assumptions and stress state (tension, bending and biaxial). In all cases the large scale tests have been assessed as one would actual structures: i.e., based on lower bound toughness values obtained from small scale fracture toughness specimens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclic loading of a plane strain mode I crack under small scale yielding is analyzed using discrete dislocation dynamics. The dislocations are all of edge character, and are modeled as line singularities in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of solutions for edge dislocations in a half-space and a non-singular complementary solution that enforces the boundary conditions, which is obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. An irreversible relation between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip is also specified, which permits crack growth to emerge naturally. It is found that crack growth can occur under cyclic loading conditions even when the peak stress intensity factor is smaller than the stress intensity required for crack growth under monotonic loading conditions; however below a certain threshold value of ΔKI no crack growth was seen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small scale yielding around a mode I crack is analysed using polycrystalline discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modelled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, nucleation, interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Grain boundaries are modelled as impenetrable to dislocations. The polycrystalline material is taken to consist of two types of square grains, one of which has a bcc-like orientation and the other an fcc-like orientation. For both orientations there are three active slip systems. Alternating rows, alternating columns and a checker-board-like arrangement of the grains is used to construct the polycrystalline materials. Consistent with the increasing yield strength of the polycrystalline material with decreasing grain size, the calculations predict a decrease in both the plastic zone size and the crack-tip opening displacement for a given applied mode I stress intensity factor. Furthermore, slip-band and kink-band formation is inhibited by all grain arrangements and, with decreasing grain size, the stress and strain distributions more closely resemble the HRR fields with the crack-tip opening approximately inversely proportional to the yield strength of the polycrystalline materials. The calculations predict a reduction in fracture toughness with decreasing grain size associated with the grain boundaries acting as effective barriers to dislocation motion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The seismic performance of waterfront cantilever sheet pile retaining walls is of continuing interest to geotechnical engineers as these structures suffer severe damage and even complete failure during earthquakes. This is often precipitated by liquefaction of the surrounding soil, either in the backfill or in front of the wall. This paper presents results from a series of small-scale plane strain models that were tested on a 1-g shaking table and recorded using a high-speed, high-resolution digital camera. The technique of Particle Image Velocimetry (PIV) was applied in order to allow the failure mechanisms to be visualised. It is shown that using PIV analyses it is possible to obtain failure mechanisms for a cantilever wall in liquefiable soil. These failure mechanisms are compared with those obtained for a cantilever wall in dry soil, previously carried out at a similar scale. It was observed that seismic liquefaction causes significant displacement in much larger zones of soil near the retaining wall compared to an equivalent dry case. The failure mechanism for a cantilever wall with liquefiable backfill, but with a remediated zone designed not to liquefy, is also presented and compared to the unremediated case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flow through a terminating shock wave and the subsequent subsonic diffuser typically found in supersonic inlets has been simulated using a small-scale wind tunnel. Experiments have been conducted at an inflow Mach number of 1.4 using a dual-channel working section to produce a steady near-normal shock wave. The setup was designed so that the location of the shock wave could be varied relative to the diffuser. As the near-normal shock wave was moved downstream and into the diffuser, an increasingly distorted, three-dimensional, and separated flow was observed. Compared with the interaction of a normal shock wave in a constant area duct, the addition of the diffuser resulted in more prominent corner interactions. Microvortex generators were added to determine their potential for removing flow separation. Although these devices were found to reduce the extent of separation, they significantly increased three-dimensionality and even led to a large degree of flow asymmetry in some configurations. Copyright © 2011 by Neil Titchener and Holger Babinsky.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study employs an analytical model to describe the rocking response of a masonry arch to in-plane seismic loading. Through evaluation of the rate of energy input to the system, the model reveals the ground motions that cause maximum rocking amplification. An experimental investigation of small-scale masonry arches subjected to past earthquake time histories is used to evaluate the analytical model and to explore arch rocking behaviour. The results demonstrate that rocking amplification can occur, but is highly sensitive to slight variations in the ground motion. Thus, the accuracy to which the arch response can be predicted is brought into perspective. The concept that the primary impulse of an expected ground motion is fundamentally important in predicting arch collapse is evaluated in light of the developed energy approach. Finally, a statistical method is proposed for predicting the probability of arch collapse during seismic loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.